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Preface 

There are a great deal of books on introductory analysis in print today, 
many written by mathematicians of the first rank. The publication of 
another such book therefore warrants a defense. I have taught analysis for 
many years and have used a variety of texts during this time. These books 
were of excellent quality mathematically but did not satisfy the needs of the 
students I was teaching. They were written for mathematicians but not for 
those who were first aspiring to attain that status. The desire to fill this gap 
gave rise to the writing of this book. 

This book is intended to serve as a text for an introductory course in 
analysis. Its readers will most likely be mathematics, science, or engineering 
majors undertaking the last quarter of their undergraduate education. The 
aim of a first course in analysis is to provide the student with a sound 
foundation for analysis, to familiarize him with the kind of careful thinking 
used in advanced mathematics, and to provide him with tools for further 
work in it. The typical student we are dealing with has completed a 
three-semester calculus course and possibly an introductory course in 
differential equations. He may even have been exposed to a semester or two 
of modern algebra. All this time his training has most likely been intuitive 
with heuristics taking the place of proof. This may have been appropriate 
for that stage of his development. However, once he enters the analysis 
course he is subject to an abrupt change in the point of view and finds that 
much more is demanded of him in the way of rigorous and sound 
deductive thinking. In writing the book we have this student in mind. It is 
intended to ease him into his next, more mature stage of mathematical 
development. 

Throughout the text we adhere to the spirit of careful reasoning and rigor 
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that the course demands. We deal with the problem of student adjustment 
to the stricter standards of rigor demanded by slowing down the pace at 
which topics are covered and by providing much more detail in the proofs 
than is customary in most texts. Secondly, although the book contains its 
share of abstract and general results, it concentrates on the specific and 
concrete by applying these theorems to gain information about some of the 
important functions of analysis. Students are often presented and even have 
proved for them theorems of great theoretical significance without being 
given the opportunity of seeing them "in action" and applied in a non
trivial way. In our opinion, good pedagogy in mathematics should give 
substance to abstract and general results by demonstrating their power. 

This book is concerned with real-valued functions of one real variable. 
There is a chapter on complex numbers, but these playa secondary role in 
the development of the material, since they are used mainly as computa
tional aids to obtain results about trigonometric sums. 

For pedagogical reasons we avoid "slick" proofs and sacrifice brevity for 
straightforwardness. 

The material is developed deductively from axioms for the real numbers. 
The book is self-contained except for some theorems in finite sets (stated 
without proof in Chapter II) and the last theorem in Chapter XIV. In the 
main, any geometry that is included is there for purposes of visualization 
and illustration and is not part of the development. Very little is required 
from the reader in the way of background. However, we hope that he has 
the desire and ability to follow a deductive argument and is not afraid of 
elementary algebraic manipulation. In short, we would like the reader to 
possess some "mathematical maturity." The book's aim is to obtain all its 
results as logical consequences of the fifteen axioms for the real numbers 
listed in Chapter I. 

The material is presented sequentially in "theorem-proof-theorem" fash
ion and is interspersed with definitions, examples, remarks, and problems. 
Even if the reader does not solve all the problems, we expect him to read 
each one and to understand the result contained in it. In many cases the 
results cited in the problems are used as proofs of later theorems and 
constitute part of the development. When the reader is asked, in a problem, 
to prove a result which is used later, this usually involves paralleling work 
already done in the text. 

Chapters are denoted by Roman numerals and are separated into sec
tions. Results are referred to by labeling them with the chapter, section, and 
the order in which they appear in the section. For example, Theorem X.6.2 
refers to the second theorem of section 2 in Chapter X. When referring to a 
result in the same chapter, the Roman numeral indicating the chapter is 
omitted. Thus, in Chapter X, Theorem X.6.2 is referred to as Theorem 6.2. 

We also mention a notational matter. The open interval with left end
point a and right endpoint b is written in the book as (a; b) using a 
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semi-colon between a and b, rather than as (a, b). The latter symbol is 
reserved for the ordered pair consisting of a and b and we wish to avoid 
confusion. 
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