hematical Surveys and onographs

olume 123

Fundamental Algebraic Geometry

Grothendieck's FGA Explained

Barbara Fantechi Lothar Göttsche Luc Illusie Steven L. Kleiman Nitin Nitsure Angelo Vistoli

American Mathematical Society

EDITORIAL COMMITTEE

Jerry L. Bona Michael G. Eastwood

Peter S. Landweber stwood Michael P. Loss J. T. Stafford, Chair

2000 Mathematics Subject Classification. Primary 14–01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-123

Library of Congress Cataloging-in-Publication Data

Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi...[et al.]. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper)
1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I. Fantechi, Barbara, 1966– II. Mathematical surveys and monographs ; no. 123.

2005053614

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2005 by the American Mathematical Society. All rights reserved.

Reprinted by the American Mathematical Society, 2006.

The American Mathematical Society retains all rights

except those granted to the United States Government.

Copyright of individual articles may revert to the public domain 28 years

after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America.

 \otimes The paper used in this book is acid-free and falls within the guidelines

established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 11 10 09 08

Contents

Preface		vii
Part 1. theory	Grothendieck topologies, fibered categories and descent	
5	Angelo Vistoli	1
Introduction		
Chapter 1.1. 1.2.	1. Preliminary notions Algebraic geometry Category theory	$7\\7\\10$
Chapter 2.1. 2.2. 2.3.	2. Contravariant functors Representable functors and the Yoneda Lemma Group objects Sheaves in Grothendieck topologies	$13 \\ 13 \\ 18 \\ 25$
Chapter 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8.	3. Fibered categories Fibered categories Examples of fibered categories Categories fibered in groupoids Functors and categories fibered in sets Equivalences of fibered categories Objects as fibered categories and the 2-Yoneda Lemma The functors of arrows of a fibered category Equivariant objects in fibered categories	$\begin{array}{c} 41 \\ 41 \\ 48 \\ 52 \\ 53 \\ 56 \\ 59 \\ 61 \\ 63 \end{array}$
Chapter 4.1. 4.2. 4.3. 4.4.	4. Stacks Descent of objects of fibered categories Descent theory for quasi-coherent sheaves Descent for morphisms of schemes Descent along torsors	67 67 79 88 99
Fart 2.	Nitin Nitsure	105
Chapter Introd 5.1. 5.2. 5.3.	5. Construction of Hilbert and Quot schemes duction The Hilbert and Quot functors Castelnuovo–Mumford regularity Semi-continuity and base-change	$107 \\ 107 \\ 108 \\ 114 \\ 118$

CONTENTS

5.4.	Generic flatness and flattening stratification	122
5.6.	Some variants and applications	130
Part 3	BARBARA FANTECHI AND LOTHAR GÖTTSCHE	139
Introdu	etion	1/1
mirout		141
Chapte	r 6. Elementary Deformation Theory	143
6.1.	Infinitesimal study of schemes	143
6.2.	Pro-representable functors	148
6.3.	Non-pro-representable functors	150
6.4.	Examples of tangent–obstruction theories	152
6.5.	More tangent-obstruction theories	157
Chapte	r 7. Hilbert Schemes of Points	159
Intro	oduction	159
7.1.	The symmetric power and the Hilbert–Chow morphism	160
7.2.	Irreducibility and nonsingularity	166
7.3.	Examples of Hilbert schemes	169
7.4.	A stratification of the Hilbert schemes	170
7.5.	The Betti numbers of the Hilbert schemes of points	173
7.6.	The Heisenberg algebra	175
Part 4	Grothendieck's existence theorem in formal geometry	
with a	letter of Jean-Pierre Serre	
	LUC ILLUSIE	179
Chapte	r 8. Grothendieck's existence theorem	
enapte	in formal geometry	181
Intro	oduction	181
8.1.	Locally noetherian formal schemes	181
8.2.	The comparison theorem	187
8.3.	Cohomological flatness	196
8.4.	The existence theorem	204
8.5.	Applications to lifting problems	208
8.6.	Serre's examples	228
8.7.	A letter of Serre	231
Part 5	5. The Picard scheme	00 -
	STEVEN L. KLEIMAN	235
Chapte	r 9. The Picard scheme	237
9.1.	Introduction	237
9.2.	The several Picard functors	252
9.3.	Relative effective divisors	257
9.4.	The Picard scheme	262
9.5.	The connected component of the identity	275
9.6.	The torsion component of the identity	291

Appendix A. Appendix B.	Answers to all the exercises Basic intersection theory	$301 \\ 313$
Bibliography		323
Index		333