Heinz-Otto Peitgen Hartmut Jürgens Dietmar Saupe

Fractals for the Classroom

Part Two Complex Systems and Mandelbrot Set

Evan Maletsky Terry Perciante Lee Yunker NCTM Advisory Board

National Council of Teachers of Mathematics

Springer-Verlag

Authors

Heinz-Otto Peitgen Institut für Dynamische Systeme Universität Bremen D-2800 Bremen 33 Federal Republic of Germany and Department of Mathematics Florida Atlantic University Boca Raton, FL 33432 USA

Hartmut Jürgens Institut für Dynamische Systeme Universität Bremen D-2800 Bremen 33 Federal Republic of Germany

Dietmar Saupe Institut für Dynamische Systeme Universität Bremen D-2800 Bremen 33 Federal Republic of Germany

Cover design by Claus Hösselbarth.

TI-81 Graphics Calculator is a product of Texas Instruments Inc. Casio is a registered trademark of Casio Computer Co. Ltd. Macintosh is a registered trademark of Apple Computer Inc. Microsoft BASIC is a product of Microsoft Corp.

Library of Congress Cataloging-in-Publication Data (Revised for volume 2) Fractals for the classroom. Vol. 2 published in cooperation with the National Council of Teachers of Mathematics. Includes bibliographical references and index. ISBN-13: 978-1-4612-8758-2 Contents: v. 1. Stragetic activities – v. 2. Complex systems and mandelbrot set. 1. Fractals. I. Peitgen, Heinz-Otto, 1945-II. National Council of Teachers of Mathematics.

QA614.86.P45 1991 514'.74 91-11998

Printed on acid-free paper.

© 1992 Springer-Verlag New York, Inc. Softcover reprint of the hardcover 1st edition 1992

Published in cooperation with the National Council of Teachers of Mathematics (NCTM).

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA) except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Negatives supplied by the authors.

9 8 7 6 5 4 3 2 ISBN-13: 978-1-4612-8758-2 e-ISBN-13: 978-1-4612-4406-6 DOI: 10.1007/978-1-4612-4406-6

NCTM Advisory Board

Evan Maletsky Department of Mathematics and Computer Science Montclair State College Upper Montclair, NJ 07043 USA

Terry Perciante Department of Mathematics Wheaton College Wheaton, IL 60187-5593 USA

Lee Yunker Department of Mathematics West Chicago Community High School West Chicago, IL 60185 USA

Contents

Introduction: Causality Principle, Deterministic Laws and Chaos			
8	Recu	irsive Structures: Growing of Fractals and Plants	9
	8.1	L-Systems: A Language For Modeling Growth	13
	8.2	Growing Classical Fractals with MRCMs	21
	8.3	Turtle Graphics: Graphical Interpretation of L-Systems	34
	8.4	Growing Classical Fractals with L-Systems	38
	8.5	Growing Fractals with Networked MRCMs	51
	8.6	L-System Trees and Bushes	57
	8.7	Program of the Chapter: L-systems	62
9	Pase	al's Triangle: Cellular Automata and Attractors	67
	9.1	Cellular Automata	72
	9.2	Binomial Coefficients and Divisibility	85
	9.3	IFS: From Local Divisibility to Global Geometry	97
	9.4	Catalytic Converters or how many Cells are Black?	110
	9.5	Program of the Chapter: Cellular Automata	113
10	Dete	rministic Chaos: Sensitivity, Mixing, and Periodic Points	117
	10.1	The Signs of Chaos: Sensitivity	119
	10.2	The Signs of Chaos: Mixing and Periodic Points	132
	10.3	Ergodic Orbits and Histograms	138
	10.4	Paradigm of Chaos: The Kneading of Dough	148
	10.5	Analysis of Chaos: Sensitivity, Mixing, and Periodic Points	164
	10.6	Chaos for the Quadratic Iterator	175
	10.7	Numerics of Chaos: Worth the Trouble or Not?	184
	10.8	Program of the Chapter: Time Series and Error Development	191
11	Order and Chaos: Period-Doubling and its Chaotic Mirror		
	11.1	The First Step From Order to Chaos: Stable Fixed Points	202
	11.2	The Next Step From Order to Chaos: The Period Doubling Scenario	214
	11.3	The Feigenbaum Point: Entrance to Chaos	231
	11.4	From Chaos to Order: a Mirror Image	240
	11.5	Intermittency and Crises: The Backdoors to Chaos	253
	11.6	Program of the Chapter: Final State Diagram	265

12	Strange Attractors: The Locus of Chaos	269		
	12.1 A Discrete Dynamical System in Two Dimensions: Hénon's Attractor	274		
	12.2 Continuous Dynamical Systems: Differential Equations	295		
	12.3 The Rössler Attractor	304		
	12.4 The Lorenz Attractor	315		
	12.5 The Reconstruction of Strange Attractors	328		
	12.6 Fractal Basin Boundaries	338		
	12.7 Program of the Chapter: Rössler Attractor	348		
13	Julia Sets: Fractal Basin Boundaries	351		
	13.1 Julia Sets as Basin Boundaries	353		
	13.2 Complex Numbers — A Short Introduction	359		
	13.3 Complex Square Roots and Quadratic Equations	367		
	13.4 Prisoners versus Escapees	372		
	13.5 Equipotentials and Field Lines for Julia Sets	384		
	13.6 Chaos Game and Self-Similarity for Julia Sets	397		
	13.7 The Critical Point and Julia Sets as Cantor Sets	403		
	13.8 Quaternion Julia Sets	411		
	13.9 Program of the Chapter: Julia Sets	413		
14	The Mandelbrot Set: Ordering the Julia Sets	415		
	14.1 From the Structural Dichotomy to the Potential Function	417		
	14.2 The Mandelbrot Set — A Road Map for Julia Sets	427		
	14.3 The Mandelbrot Set as a Table of Content	449		
	14.4 Program of the Chapter: The Mandelbrot Set	467		
Bił	Bibliography			
Inc	Index			