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Preface 

The aim of this book is to provide an introduction for students and nonspecialists 
to a fascinating relation between combinatorial geometry and algebraic geometry, 
as it has developed during the last two decades. This relation is known as the theory 
of toric varieties or sometimes as torus embeddings. 

Chapters I-IV provide a self-contained introduction to the theory of convex poly­
topes and polyhedral sets and can be used independently of any applications to 
algebraic geometry. Chapter V forms a link between the first and second part of the 
book. Though its material belongs to combinatorial convexity, its definitions and 
theorems are motivated by toric varieties. Often they simply translate algebraic 
geometric facts into combinatorial language. Chapters VI-VIII introduce toric va­
rieties in an elementary way, but one which may not, for specialists, be the most 
elegant. 

In considering toric varieties, many of the general notions of algebraic geometry 
occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book 
may also serve as an introduction to algebraic geometry and preparation for farther 
reaching texts about this field. 

The prerequisites for both parts of the book are standard facts in linear algebra 
(including some facts on rings and fields) and calculus. Assuming those, all proofs 
in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter 
VIII we use a few additional prerequisites with references from appropriate texts. 

The book covers material for a one year graduate course. For shorter courses with 
emphasis on algebraic geometry, it is possible to start with Part 2 and use Part I 
as references for combinatorial geometry. 

For each section of Chapters I-VIII, there is an addendum in the appendix of the 
book. In order to avoid interruptions and to minimize frustration for the beginner, 
comments, historical notes, suggestions for further reading, additional exercises, 
and, in some cases, research problems are collected in the Appendix. 
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Introduction 

Studying the complex zeros of a polynomial in several variables reveals that there 
are properties which depend not on the specific values of the coefficients but 
only on their being nonzero. They depend on the exponent vectors showing up 
in the polynomial or, more precisely, on the lattice polytope which is the convex 
hull of such vectors. This had already been discovered by Newton and was taken 
into consideration by Minding and some other mathematicians in the nineteenth 
century. However, it had practically been forgotten until its rediscovery around 
1970, when Demazure, ada, Mumford, and others developed the theory of toric 
varieties. 

The starting point lay in algebraic groups. Properties of zeros of polynomials 
that depend only on the exponent vectors do not change if each coordinate of 
any solution is multiplied by a nonvanishing constant. Such transformations are 
effected by diagonal matrices with nonzero determinants. They form a group which 
can be represented by C*" where C* := C \ {OJ is the multiplicative group of 
complex numbers. C*1l (for n = 2 having, topologically, an ordinary torus as 
a retract) is called an algebraic torus. Demazure succeeded in combinatorially 
characterizing those regular algebraic varieties on which a torus operates with an 
open orbit. ada, Mumford, and others extended this to the nonregular case and 
termed the introduced varieties torus embeddings or toric varieties. 

Once the combinatorial characterization had been achieved, it gave way to defining 
toric varieties without starting from algebraic groups by use of combinatorial 
concepts like lattice cones and the algebras defined by monoids of all lattice points 
in cones. This is the path we follow in the present book. 

Toric varieties-being a class of relatively concrete algebraic varieties-may ap­
pear to relate combinatorics to old-fashioned, say, up to 1950, algebraic geometry. 
This is not the case. Actually, the more recent way of thought provides the tools 
for building a wide bridge between combinatorial and algebraic geometry. Notions 
like sheaves, blowups, or the use of homology in algebraic geometry are such tools. 

In the first part of the book, we have naturally limited the topics to those which are 
needed in the second part. However, there was not much to be omitted. Coming 
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xiv Introduction 

from combinatorial convexity, it is quite a surprise how many of the traditional 
notions like support function or mixed volume now appear in a new light. 

In our attempt to present a compact introduction to the theory of convex polytopes, 
we have sought short proofs. Also, a coordinate-free approach to Gale transforms 
seemed to fit particularly well into the needs of later applications. Similarly, in 
Part 2 we spent much energy on simplifications. Our definition of intersection 
numbers and a discussion of the Hodge inequality working without the tools of 
algebraic topology are some of the consequences. 

A natural question concerning the relationship between combinatorial and al­
gebraic geometry is "Does the algebraic geometric side benefit more from the 
combinatorial side than the combinatorial side does from the algebraic geometric 
one?" In this text the former is true. We prove algebraic geometric theorems from 
combinatorial geometric facts, "turning around" the methods often applied in the 
literature. There is only one exception in the very last section of the book. We quote 
a toric version of the Riemann-Roch-Hirzebruch theorem without proof and draw 
combinatorial conclusions from it. A purely combinatorial version of the theorem 
due to Morelli [1993a] would require more work on so-called polytope algebra. 

Many related topics have been omitted, for example, matroid theory or the theory of 
Stanley-Reisner rings and their powerful combinatorial implications. The reader 
familiar with such topics may recognize their links to those covered here and detect 
the common spirit of mathematical development in all of them. 


