Graduate Texts in Mathematics 85

Editorial Board

F. W. Gehring P. R. Halmos (Managing Editor)

C. C. Moore

R.E. Edwards

Fourier Series

A Modern Introduction Volume 2

Second Edition

Springer-Verlag New York Heidelberg Berlin R.E. Edwards The Australian National University Department of Mathematics (Institute for Advanced Studies) P.O. Box 4 Canberra, A.C.T. 2600 Australia

Editorial Board

P.R. Halmos

Managing Editor Dept. of Mathematics Indiana University Bloomington, Indiana 47401 USA F.W. Gehring Dept. of Mathematics University of Michigan Ann Arbor, Michigan 48104 USA C.C. Moore Dept. of Mathematics University of California at Berkeley Berkeley, California 94720 USA

AMS Subject Classification (1980): 42-01

Library of Congress Cataloging in Publication Data (Revised)

Edwards, Robert E Fourier series, a modern introduction. (Graduate texts in mathematics; 64, 85) Bibliography: v. 1, p. 207–211; v. 2, p. Includes indexes. 1. Fourier series. I. Title. II. Series. QA404.E25 1979 515'.2433 79-11932 ISBN-13:978-1-4613-8158-7 e-ISBN-13:978-1-4613-8156-3 DOI: 10.1007/978-1-4613-8156-3 AACR2

The first edition was published by Holt, Rinehart and Winston, Inc.

© 1967, 1982 by Springer-Verlag, New York, Inc. Softcover reprint of the hardcover 2rd edition 1982

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, USA.

987654321

ISBN-13:978-1-4613-8158-7

PREFACE TO THE SECOND (REVISED) EDITION OF VOLUME 2

Apart from a number of minor corrections and changes, a substantial reformulation and up-dating of Chapters 14 and 15 has taken place. This reformulation and up-dating is a major and very welcome contribution from my friend and colleague, Dr J.W. Sanders, to whom I express my sincere thanks. His efforts have produced a much better result than I could have achieved on my own. Warm thanks are also due to Dr Jo Ward, who checked some of the revised material.

New Sections 16.9 and 16.10 have also been added.

The bibliography has been expanded and brought up to date, though it is still not exhaustive.

In spite of these changes, the third paragraph in the Preface to the revised edition of Volume 1 is applicable here. What has been accomplished here is not a complete account of developments over the past 15 years; such an account would require many volumes. Even so, it may assist some readers who wish to appraise some of these developments. More ambitious readers should consult *Mathematical Reviews* from around Volume 50 onwards.

R. E. E.

CANBERRA, September 1981

PREFACE TO VOLUME 2

The substance of the first three paragraphs of the preface to Volume 1 of *Fourier Series: A Modern Introduction* applies equally well to this second volume. To what is said there, the following remarks should be added.

Volume 2 deals on the whole with the more modern aspects of Fourier theory, and with those facets of the classical theory that fit most naturally into a function-analytic garb. With their introduction to distributional concepts and techniques and to interpolation theorems, respectively, Chapters 12 and 13 are perhaps the most significant portions of Volume 2. From a pedagogical viewpoint, the carefully detailed discussion of Marcinkiewicz's interpolation theorem will, it is hoped, go some way toward making this topic more accessible to a beginner.

A major portion of Chapter 11 is devoted to the elements of Banach algebra theory and its applications in harmonic analysis. In Chapter 16 there appears what is believed to be the first reasonably connected introductory account of multiplier problems and related matters.

For the purposes of a short course, one might be content to cover Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to and including Section 12.10, Chapter 13 up to and including Section 13.6, Chapter 14, and Sections 15.1 to 15.3. Much of Chapters 13 to 15 is independent of Chapters 11 and 12, or is easily made so. While severe pruning might lead to a tolerable excision of Section 11.4, which is required but rarely in subsequent chapters, it would be a pity thus to omit all reference to Banach algebras.

I at one time cherished the hope of including in this volume a list of current research problems, but the available space will not accommodate such a list together with the necessary explanatory notes. The interested reader may go a long way toward repairing this defect by studying some of the articles appearing in [Bi] (see, most especially, pp. 351-354 thereof).

The cross-referencing system is as follows. With the exception of references to the appendixes, the numerical component of every reference to either volume appears in the form $a \cdot b \cdot c$, where a, b, and c are positive integers; the material referred to appears in Volume 1 if and only if $1 \le a \le 10$. In the case of references to the appendixes, all of which

appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I,B.2.1" refers to Appendix B.2.1 in Volume 1.

An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibliography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover developments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examination of the bibliography and by scrutiny of the usual review literature.

Finally, I take this opportunity to renew all the thanks expressed in the preface to Volume 1, placing special reemphasis on those due to Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth Gaudry for his contributions to Chapter 13, and to my wife for her encouragement and help with the proofreading. My thanks for help in the latter connection are extended also to my son Christopher.

CANBERRA, 1967

R. E. E.

CONTENTS

Chapter	11	SPANS OF TRANSLATES. CLOSED IDEALS.	
CLOSEI) SUE	ALGEBRAS. BANACH ALGEBRAS	1
	11.1	Closed Invariant Subspaces and Closed Ideals	2
	11.2	The Structure of Closed Ideals and Related Topics	3
	11.3	Closed Subalgebras	11
	11.4	Banach Algebras and Their Applications	19
	Exerc	vises	39
Chapter	12	DISTRIBUTIONS AND MEASURES	48
	12.1	Concerning \mathbf{C}^{∞}	50
	12.2	Definition and Examples of Distributions and Measures	52
	12.3	Convergence of Distributions	57
	12.4	Differentiation of Distributions	63
	12.5	Fourier Coefficients and Fourier Series of Distributions	67
	12.6	Convolutions of Distributions	73
	12.7	More about M and L^p	79
	12.8	Hilbert's Distribution and Conjugate Series	90
	12.9	The Theorem of Marcel Riesz	100
	12.10	Mean Convergence of Fourier Series in \mathbf{L}^p (1 \infty)	106
	12.11	Pseudomeasures and Their Applications	108
	12.12	Capacities and Beurling's Problem	114
	12.13	The Dual Form of Bochner's Theorem	121
	Exerc	bises	124

CONTENTS

Chapter	13	INTERPOLATION THEOREMS	140
	13.1	Measure Spaces	140
	13.2	Operators of Type (p, q)	144
	13.3	The Three Lines Theorem	148
	13.4	The Riesz-Thorin Theorem	149
	13.5	The Theorem of Hausdorff-Young	153
	13.6	An Inequality of W. H. Young	157
	13.7	Operators of Weak Type	158
	13.8	The Marcinkiewicz Interpolation Theorem	165
	13.9	Application to Conjugate Functions	177
	13.10	Concerning $\sigma^* f$ and $s^* f$	190
,	13.11	Theorems of Hardy and Littlewood, Marcinkiewicz and	
		Zygmund	192
	Exerc	ises	197
Chapter	14 (CHANGING SIGNS OF	
FOURI	ER CO	DEFFICIENTS	205
	14.1	Harmonic Analysis on the Cantor Group	206
	14.2	Rademacher Series Convergent in $\mathbf{L}^{2}(\mathscr{C})$	215
	14.3	Applications to Fourier Series	217
	14.4	Comments on the Hausdorff-Young Theorem and Its Dual	224
	14.5	A Look at Some Dual Results and Generalizations	224
	Exerc	vises	225
Chapter	15	LACUNARY FOURIER SERIES	234
	15.1	Introduction of Sidon Sets	235
	15.2	Construction and Examples of Sidon Sets	243
	15.3	Further Inequalities Involving Sidon Sets	251
	15.4	Counterexamples concerning the Parseval Formula and Hausdorff-Young Inequalities	257
	15.5	Sets of Type (p, q) and of Type $\Lambda(p)$	258

х

	CONTENTS				
	15.6	Pointwise Convergence and Related Matters	263		
	15.7	Dual Aspects: Helson Sets	263		
	15.8	Other Species of Lacunarity	268		
	Exerc	vises	270		
Chapter	16	MULTIPLIERS	277		
	16.1	Preliminaries	278		
	16.2	Operators Commuting with Translations and Con- volutions; m-operators	281		
	16.3	Representation Theorems for m-operators	286		
	16.4	Multipliers of Type $(\mathbf{L}^{p}, \mathbf{L}^{q})$	298		
	16.5	A Theorem of Kaczmarz–Stein	308		
	16.6	Banach Algebras Applied to Multipliers	311		
	16.7	Further Developments	313		
	16.8	Direct Sum Decompositions and Idempotent Multipliers	318		
	16.9	Absolute Multipliers	323		
	16.10	Multipliers of Weak Type (p, p)	326		
	Exer	cises	328		
	Bibliography		333		
	Research Publications		338		
	Corri	genda to 2nd (Revised) Edition of Volume 1	358		
	Symbols Index				