Graduate Texts in Mathematics 85

Editorial Board
F. W. Gehring P. R. Halmos (Managing Editor)
C. C. Moore

R.E. Edwards

Fourier Series
A Modern Introduction
Volume 2
Second Edition

Springer-Verlag New York Heidelberg Berlin
R.E. Edwards

The Australian National University
Department of Mathematics
(Institute for Advanced Studies)
P.O. Box 4

Canberra, A.C.T. 2600
Australia

Editorial Board

P.R. Halmos
Managing Editor
Dept. of Mathematics
Indiana University
Bloomington, Indiana 47401 USA
F.W. Gehring
Dept. of Mathematics University of Michigan
Ann Arbor, Michigan 48104
USA
C.C. Moore
Dept. of Mathematics
University of California at Berkeley
Berkeley, California 94720 USA

AMS Subject Classification (1980): 42-01

```
Library of Congress Cataloging in Publication Data (Revised)
Edwards, Robert E
    Fourier series, a modern introduction.
    (Graduate texts in mathematics; 64, 85)
    Bibliography: v. 1, p. 207-211; v. 2, p.
    Includes indexes.
    1. Fourier series. I. Title. II. Series.
QA404.E25 1979 515'.2433 79-11932
ISBN-13:978-1-4613-8158-7 e-ISBN-13:978-1-4613-8156-3
DOI: 10.1007/978-1-4613-8156-3 AACR2
```

The first edition was published by Holt, Rinehart and Winston, Inc.
© 1967, 1982 by Springer-Verlag, New York, Inc.
Softcover reprint of the hardcover 2rd edition 1982
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, USA.

987654321

PREFACE TO THE SECOND (REVISED) EDITION OF VOLUME 2

Apart from a number of minor corrections and changes, a substantial reformulation and up-dating of Chapters 14 and 15 has taken place. This reformulation and up-dating is a major and very welcome contribution from my friend and colleague, Dr J.W. Sanders, to whom I express my sincere thanks. His efforts have produced a much better result than I could have achieved on my own. Warm thanks are also due to Dr Jo Ward, who checked some of the revised material.

New Sections 16.9 and 16.10 have also been added.
The bibliography has been expanded and brought up to date, though it is still not exhaustive.

In spite of these changes, the third paragraph in the Preface to the revised edition of Volume 1 is applicable here. What has been accomplished here is not a complete account of developments over the past 15 years; such an account would require many volumes. Even so, it may assist some readers who wish to appraise some of these developments. More ambitious readers should consult Mathematical Reviews from around Volume 50 onwards.
R.E.E.

Canberra, September 1981

PREFACE TO VOLUME 2

The substance of the first three paragraphs of the preface to Volume 1 of Fourier Series: A Modern Introduction applies equally well to this second volume. To what is said there, the following remarks should be added.

Volume 2 deals on the whole with the more modern aspects of Fourier theory, and with those facets of the classical theory that fit most naturally into a function-analytic garb. With their introduction to distributional concepts and techniques and to interpolation theorems, respectively, Chapters 12 and 13 are perhaps the most significant portions of Volume 2. From a pedagogical viewpoint, the carefully detailed discussion of Marcinkiewicz's interpolation theorem will, it is hoped, go some way toward making this topic more accessible to a beginner.

A major portion of Chapter 11 is devoted to the elements of Banach algebra theory and its applications in harmonic analysis. In Chapter 16 there appears what is believed to be the first reasonably connected introductory account of multiplier problems and related matters.

For the purposes of a short course, one might be content to cover Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to and including Section 12.10, Chapter 13 up to and including Section 13.6, Chapter 14, and Sections 15.1 to 15.3 . Much of Chapters 13 to 15 is independent of Chapters 11 and 12, or is easily made so. While severe pruning might lead to a tolerable excision of Section 11.4 , which is required but rarely in subsequent chapters, it would be a pity thus to omit all reference to Banach algebras.

I at one time cherished the hope of including in this volume a list of current research problems, but the available space will not accommodate such a list together with the necessary explanatory notes. The interested reader may go a long way toward repairing this defect by studying some of the articles appearing in [Bi] (see, most especially, pp. 351-354 thereof).

The cross-referencing system is as follows. With the exception of references to the appendixes, the numerical component of every reference to either volume appears in the form $a \cdot b \cdot c$, where a, b, and c are positive integers; the material referred to appears in Volume 1 if and only if $1 \leqslant a \leqslant 10$. In the case of references to the appendixes, all of which
appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I,B.2.1" refers to Appendix B.2.1 in Volume 1.

An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibliography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover developments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examination of the bibliography and by scrutiny of the usual review literature.

Finally, I take this opportunity to renew all the thanks expressed in the preface to Volume 1, placing special reemphasis on those due to Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth Gaudry for his contributions to Chapter 13, and to my wife for her encouragement and help with the proofreading. My thanks for help in the latter connection are extended also to my son Christopher.

CONTENTS

Chapter 11 SPANS OF TRANSLATES. CLOSED IDEALS. CLOSED SUBALGEBRAS. BANACH ALGEBRAS 1
11.1 Closed Invariant Subspaces and Closed Ideals 2
11.2 The Structure of Closed Ideals and Related Topics 3
11.3 Closed Subalgebras 11
11.4 Banach Algebras and Their Applications 19
Exercises 39
Chapter 12 DISTRIBUTIONS AND MEASURES 48
12.1 Concerning \mathbf{C}^{∞} 50
12.2 Definition and Examples of Distributions and Measures 52
12.3 Convergence of Distributions 57
12.4 Differentiation of Distributions 63
12.5 Fourier Coefficients and Fourier Series of Distributions 67
12.6 Convolutions of Distributions 73
12.7 More about \mathbf{M} and \mathbf{L}^{p} 79
12.8 Hilbert's Distribution and Conjugate Series 90
12.9 The Theorem of Marcel Riesz 100
12.10 Mean Convergence of Fourier Series in $\mathbf{L}^{p}(1<p<\infty)$ 106
12.11 Pseudomeasures and Their Applications 108
12.12 Capacities and Beurling's Problem 114
12.13 The Dual Form of Bochner's Theorem 121
Exercises 124
Chapter 13 INTERPOLATION THEOREMS 140
13.1 Measure Spaces 140
13.2 Operators of Type (p, q) 144
13.3 The Three Lines Theorem 148
13.4 The Riesz-Thorin Theorem 149
13.5 The Theorem of Hausdorff-Young 153
13.6 An Inequality of W. H. Young 157
13.7 Operators of Weak Type 158
13.8 The Marcinkiewicz Interpolation Theorem 165
13.9 Application to Conjugate Functions 177
13.10 Concerning $\sigma^{*} f$ and $s^{*} f$ 190
13.11 Theorems of Hardy and Littlewood, Marcinkiewicz and Zygmund 192
Exercises 197
Chapter 14 CHANGING SIGNS OF FOURIER COEFFICIENTS 205
14.1 Harmonic Analysis on the Cantor Group 206
14.2 Rademacher Series Convergent in $\mathbf{L}^{2}(\mathscr{C})$ 215
14.3 Applications to Fourier Series 217
14.4 Comments on the Hausdorff-Young Theorem and Its Dual 224
14.5 A Look at Some Dual Results and Generalizations 224
Exercises 225
Chapter 15 LACUNARY FOURIER SERIES 234
15.1 Introduction of Sidon Sets 235
15.2 Construction and Examples of Sidon Sets 243
15.3 Further Inequalities Involving Sidon Sets 251
15.4 Counterexamples concerning the Parseval Formula and Hausdorff-Young Inequalities 257
15.5 Sets of Type (p, q) and of Type $\Lambda(p)$ 258
15.6 Pointwise Convergence and Related Matters 263
15.7 Dual Aspects: Helson Sets 263
15. 8 Other Species of Lacunarity 268
Exercises 270
Chapter 16 MULTIPLIERS 277
16.1 Preliminaries 278
16.2 Operators Commuting with Translations and Con- volutions; m-operators 281
16.3 Representation Theorems for \mathfrak{m}-operators 286
16.4 Multipliers of Type ($\mathbf{L}^{p}, \mathbf{L}^{q}$) 298
16.5 A Theorem of Kaczmarz-Stein 308
16.6 Banach Algebras Applied to Multipliers 311
16.7 Further Developments 313
16.8 Direct Sum Decompositions and Idempotent Multi- 318 pliers
16.9 Absolute Multipliers 323
16.10 Multipliers of Weak Type (p, p) 326
Exercises 328
Bibliography 333
Research Publications 338
Corrigenda to 2nd (Revised) Edition of Volume 1 358
Symbols 359
Index 361

