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PREFACE TO THE SECOND (REVISED) 
EDITION OF VOLUME 2 

Apart from a number of minor corrections and changes, a 
substantial reformulation and up-dating of Chapters 14 and 15 has taken 
place. This reformulation and up-dating is a major and very welcome 
contribution from my friend and colleague, Dr J.W. Sanders, to whom I 
express my sincere thanks. His efforts have produced a much better 
result than I could have achieved on my own. Warm thanks are also due 
to Dr Jo Ward, who checked some ofthe revised material. 

New Sections 16.9 and 16.10 have also been added. 
The bibliography has been expanded and brought up to date, though it 

is still not exhaustive. 
In spite of these changes, the third paragraph in the Preface to the 

revised edition of Volume 1 is applicable here. What has been 
accomplished here is not a complete ac count of developments over the 
past 15 years; such an account would require many volumes. Even so, it 
may assist some readers who wish to appraise some of these 
developments. More ambitious readers should consult M athematical 
Reviews from around V olume 50 onwards. 

R.E.E. 
CANBERRA, September 1981 
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PREFACE TO VOLUME 2 

The substance of the first three paragraphs of the preface to 
Volume 1 of Fourier Series: A Modern Introduction applies equaIly weIl to 
this second volume. To what is said there, the foIlowing remarks should 
be added. 

V olume 2 deals on the whole with the more modern aspects of Fourier 
theory, and with those facets of the classical theory that fit most nat­
urally int<;> a function-analytic garb. With their introduction to distri­
butional concepts and techniques and to interpolation theorems, respec­
tively, Chapters 12 and 13 are perhaps the most significant portions of 
Volume 2. From a pedagogical viewpoint, the carefully detailed dis­
cussion of Marcinkiewicz's interpolation theorem will, it is hoped, go some 
way toward making this topic more accessible to a beginner. 

A major portion of Chapter 11 is devoted to the elements of Banach 
algebra theory and its applications in harmonic analysis. In Chapter 16 
there appears what is believed to be the first reasonably connected intro­
ductory account of multiplier problems and related matters. 

For the purposes of a short course, one might be content to cover 
Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to 
and including Section 12.10, Chapter 13 up to and including Section 13.6, 
Chapter 14, and Sections 15.1 to 15.3. Much of Chapters 13 to 15 is 
independent of Chapters 11 and 12, or is easily made so. While severe 
pruning might lead to a tolerable excision of Section 11.4, which is re­
quired but rarely in subsequent chapters, it would be a pity thus to omit 
all reference to Banach algebras. 

I at one time cherished the hope of including in this volume a list of 
current research problems, but the available space will not accommodate 
such a list together with the necessary explanatory notes. The interested 
reader may go a long way toward repairing this defect by studying some 
of the articles appearing in [Bi] (see, most especially, pp. 351-354 
thereof). 

The cross-referencing system is as follows. With the exception of refer­
ences to the appendixes, the numerical component of every reference to 
either volume appears in the form a . b . C, where a, b, and C are positive 
integers; the material referred to appears in Volume 1 if and only if 
1 ~ a ~ lO. In the case of references to the appendixes, all of which 
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viii PREFACE 

appear in Volume 1, a Roman numeral "I" has been prefixed as a 
reminder to the reader; thus, for example, "I,B.2.1 " refers to Appendix 
B.2.1 in Volume 1. 

An understanding of the main topics discussed in this book does not, I 
hope, hinge upon repeated consultation of the items listed in the bibli­
ography. Readers with a limited aim should find strictly necessary only 
an occasional reference to a few of the book listed. The remaining items, 
and especially the numerous research papers mentioned, are listed as an 
aid to those readers who wish to pursue the subject beyond the limits 
reached in this book; such readers must be prepared to make the very 
considerable effort called for in making an acquaintance with current 
research literature. A few of the research papers listed cover devel­
opments that came to my notice too late for mention in the main text. 
For this reason, any attempted summary in the main text of the current 
standing of a research problem should be supplemented by an examin­
ation of the bibliography and by scrutiny of the usual review literature. 

Finally, I take this opportunity to renewall the thanks expressed in 
the preface to Volume 1, placing special reemphasis on those due to 
Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth 
Gaudry for his contributions to Chapter 13, and to my wife for her 
encouragement and help with the proofreading. My thanks for help in the 
latter connection are extended also to my son Christopher. 

CANBERRA, 1967 R.E.E. 
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