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Preface 

Man sollte weniger danach streben, die Grenzen der mathe
matischen Wissenschaften zu erweitern, als vielmehr danach, 
den bereits vorhandenen Stoff aus umfassenderen Gesichts
punkten zu betrachten - E. Study 

Today most mathematicians who know about Kronecker's 
theory of divisors know about it from having read Hermann 
Weyl's lectures on algebraic number theory [We], and regard 
it, as Weyl did, as an alternative to Dedekind's theory of ideals. 
Weyl's axiomatization of what he calls "Kronecker's" theory is 
built-as Dedekind's theory was built-around unique factor
ization. However, in presenting the theory in this way, Weyl 
overlooks one of Kronecker's most valuable ideas, namely, the 
idea that the objective of the theory is to define greatest com
mon divisors, not to achieve factorization into primes. 

The reason Kronecker gave greatest common divisors the 
primary role is simple: they are independent of the ambient 
field while factorization into primes is not. The very notion of 
primality depends on the field under consideration-a prime 
in one field may factor in a larger field-so if the theory is 
founded on factorization into primes, extension of the field 
entails a completely new theory. Greatest common divisors, 
on the other hand, can be defined in a manner that does not 
change at all when the field is extended (see §1.16). Only 
after he has laid the foundation of the theory of divisors does 
Kronecker consider factorization of divisors into divisors prime 
in some specified field. 

This book gives a full development of a general theory of 
divisors (Part 1), together with applications to algebraic num
ber theory (Part 2) and the theory of algebraic curves (Part 3). 
There is a preliminary section (Part 0) on a theorem of polyno
mial algebra that is a natural foundation of the theory, and an 
Appendix on differentials, which makes possible the statement 
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and proof of the lliemann-Roch theorem for curves. 
The book began more than ten years ago with an effort to 

understand Kronecker's theory as it is presented in his trea
tise Grundzuge einer arithmetischen Theorie der algebraischen 
Grossen (§14 et seq.). (For an early version of the result of 
these efforts, see the Appendix of [El].) In the intervening 
years, as my understanding of the theory has increased, I have 
made many simplifications and extensions of it. 

The basic idea is simple: For polynomials with rational coef
ficients, the content of a product is the product of the contents. 
(The "content" of a polynomial is the greatest common divi
sor of its coefficients.) The same should be true of polynomials 
with algebraic coefficients. However, the notion of "content" 
has no obvious meaning for a polynomial with algebraic co
efficients. The theory of divisors defines the "content" of a 
polynomial with algebraic coefficients in such a way that the 
content of a product is the product of the contents. 

In fact, this one requirement determines what the content 
must be in any particular case; the only problems are to show 
that a consistent theory results and to describe in a simple way 
what that theory is. As the idea is stated above, and as it will 
be sketched in this preface, it applies to polynomials whose 
coefficients are algebraic numbers (roots of polynomials in one 
indeterminate with coefficients in the ring of integers Z) but 
it applies just as well when the integers are replaced by any 
natural ring (see §1.2). 

Let I and 9 be polynomials (in any number of indetermi
nates) whose coefficients are algebraic numbers. There is a 
polynomial h, whose coefficients are algebraic numbers, such 
that Ih has coefficients in Z. (If the coefficients of I are con
tained in an algebraic number field K, the norm N K I of I 
relative to the field extension K :J Q has coefficients in Q, 
and one can take h to be (NKJ)/I times a common denomi
nator of the coefficients of N K I-see § 1.17.) The content of I 
divides the content of 9 if and only if the content of I h divides 
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the content of gh (because the contents of Ih and gh are the 
contents of I and g, respectively, times the content of h). But, 
since I h has coefficients in Z, its content is a positive integer, 
namely, the greatest common divisor d of the coefficients of 
I h. Therefore, the statement that the content of I h divides 
the content of gh has the natural meaning that each coefficient 
of gh is divisible by d (i.e., the coefficient divided by d is an 
algebraic integer). Thus, one can test whether the content of 
I divides the content of 9 by finding an h, determining d, and 
testing whether the coefficients of gh/d are algebraic integers; 
the content of I divides the content of 9 if and only if the 
answer is yes for all coefficients of gh/d. (See §1.12, Corollary 
(12).) 

The content of a polynomial is, by definition, a divisor. As 
the theory is developed below, the word "content" is not used; 
the content of I is called "the divisor represented by I." Divi
sors are represented by polynomials, divisibility of one divisor 
by another can be tested by the method just described, and 
two divisors are regarded as equal if each divides the other. 
The task is to show that these definitions result in a consistent 
theory, and to develop this theory. 

The nonzero divisors form a multiplicative group. If one 
specifies an algebraic number field K ::J Q and restricts con
sideration to polynomials with coefficients in K, the multi
plicative group of divisors coincides with the group of ideals 
in K in the sense of Dedekind. The Kroneckerian theory of 
divisors has at least three clear advantages over the Dedekin
dian theory of ideals: (1) It follows from the single, natural 
premise that the content of the product of two polynomials is 
the product of the contents. (2) It entails an algorithmic test 
for divisibility, which, in Dedekindian terms, gives a specific 
computation for deciding whether a given element is in the 
ideal generated by a finite set of other elements. (For ideologi
cal reasons that are explained in [E2], Dedekind made a virtue 
of the lack of such a test in his theory, whereas Kronecker was 
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of the opposite opinion.) (3) It is independent of the ambient 
field, so that, unlike the Dedekindian theory, all statements 
remain true without modification when the ambient field is 
extended. (The very definition of an ideal as a certain kind 
of subset of the field depends heavily on the ambient field.) 
Another advantage of the theory of divisors is its applicability 
to integral and nonintegral divisors alike; the theory of ideals 
involves both integral and nonintegral ideals, but the integral 
ideals are far more natural and are usually the only ones in
troduced in the early stages of the theory. 

As was already remarked, the theorem which states that a 
divisor (or an ideal) can be written in one and only one way 
as a product of powers of distinct prime divisors (ideals) has 
meaning only when an ambient field is specified, because only 
then does the word "prime" have meaning. However, many 
applications of this theorem require only a decomposition into 
a product of powers of relatively prime divisors, a notion inde
pendent of the ambient field. Thus, factorization into primes 
can often be replaced by Theorem 1 of § 1.19, which states that 
the divisors in any given finite set can be written as products 
of powers of relatively prime integral divisors. 

A second fundamental theorem of divisor theory is the fol
lowing: An integral divisor divides at least one algebraic inte
ger. Therefore, given an integral divisor A, there is an integral 
divisor B such that AB is the divisor of an algebraic integer. 
Theorem 2 (§1.20) states that, given any integral divisor C, 
one can in fact choose B to be relatively prime to C (i.e., 
there is an integral divisor B relatively prime to C for which 
AB is the divisor of an algebraic integer). One corollary of this 
theorem is that every divisor is the greatest common divisor of 
just two algebraic numbers. Another corollary is a divisibility 
test of the type used by Kummer in his definition of "ideal 
prime factors" of cyclotomic integers, the notion with which 
he initiated divisor theory, in a special case, in 1846. (See also 
§2.11. ) 
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The remaining topics treated in the general theory of Part 
1 all relate to divisors in some particular ambient field. They 
include divisor class groups, the factorization of prime divi
sors in normal extension fields, ring;s of values of a given field 
at a given integral divisor, discriminants, differents, and ram
ification. A topic not covered in the general theory is the 
representation of an arbitrary divisor as a product of powers 
of divisors prime in a given field. The problem of giving, in 
the general case, an algorithm for fCl.ctoring an integral divisor 
into irreducible (prime) factors (see §1.18) appears to be more 
difficult than the problems treated here. At any rate, it is a 
problem for which I do not have a solution. 

However, in the special case of Part 2-the case of algebraic 
number fields-it is quite simple to write any given divisor as 
a product of powers of prime divisors (§2.1). Much of Part 
2 is devoted to proving the validity of the following method 
for factoring the divisor of a prime integer p in an algebraic 
number field. Let aI, a2, ••. , a v be algebraic integers and 
let K = Q( aI, a2, ... , a v ) be the field they generate over 
Q. Let X, UI, U2, •.. , U v be indeterminates, let F(X, UI, U2, 

... , u v ) be the norm of X - UI al - U2a2 - ••• - uvav relative 
to K J Q (F is a polynomial with coefficients in Z), and let 
F = 1r 1;2 ... 1!.m mod p be the factorization of F mod pinto 
powers of distinct irreducible polynomials with coefficients in 
the field Z mod p. Normally the divisor Pi represented by the 
polynomial p+ h( al UI + ... +avuv , Ul, U2, •• . , u v ) is prime in 
K, Pi =I- Pj for i =I- j, and p;l p;2 ... p~m is the divisor of p. 
For a given set of a's, this is true for all but a finite number 
of primes p (§2.4). IT the a's have the property that every 
algebraic integer in K can be expressed as a polynomial in the 
a's with coefficients in Z-and for l~iven K such a set of a's 
can always be found-it is true for l~ll primes p. 

This method of factoring the divisor of p was first proposed 
by Kronecker [Krl, §25], who proposed it in a much more 
general case than the case of algebraic number fields. The va-
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lidity of the method in the number field case was proved by 
Hensel, but, although Hensel stated [He, p. 76] that he had a 
proof which he would soon publish, I do not know of a proof 
of Kronecker's more general case. (IT one could be given, it 
would be a large step toward the solution of the problem of 
factoring divisors in the general case.) 

Two other topics treated in Part 2 are Dedekind's discrimi
nant theorem (§2.8) and the factorization of primes in subfields 
of cyclotomic fields (§2.11). 

Application of the theory of divisors to algebraic curves in 
Part 3 calls for a slight extension of the notion of "divisor." 
The field of functions K on an algebraic curve over the ratio
nals is an algebraic extension of the natural ring Q[x] and as 
such has a divisor theory. This divisor theory depends, how
ever, on the choice of a parameter x on the curve. A global 
divisor in such a field K is the assignment to each parameter 
x of a divisor Ax in the divisor theory for this parameter in 
such a way that the divisors Ax "agree on overlaps" in a nat
ural way (§3.4). In Part 3, unless otherwise stated, "divisor" 
means "global divisor." 

Divisor theory provides the following answer to the perennial 
question "What is a point?" in the theory of algebraic curves. 
Let K be the field of rational functions on the algebraic curve 
defined by the equation F(x, y) = 0, where F is an irreducible 
polynomial in two indeterminates with coefficients in Z. Let 
a and b be algebraic numbers in K such that F( a, b) = 0. 
There is associated to such a pair of algebraic numbers a divisor 
in K, namely, the numerator of the divisor represented by 
(x - a)U + (y - b)V (where x - a and y - b are elements of 
K, and U and V are indeterminates). IT (a, b) is a nonsingular 
point of F = 0, that is, if the partial derivatives of F at (a, b) 
are not both zero, the divisor in K obtained in this way is 
called a place (see §3.13). Places can also be characterized as 
divisors in K which are prime in K and in all extensions of 
K obtained by adjoining constants to K (§3.22). Yet another 
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characterization of places is as divisors for which the ring of 
values coincides with the field of constants of K. 

Places capture algebraically the notion of a point on a curve. 
For example, the origin (0,0) does not give rise to a place on 
the folium of Descartes x 3 + y3 - xy = 0, but, rather, gives rise 
to a product of two places, namely, the zero and the pole of 
the "function" x/yon this curve. That the origin is a product 
of two places expresses the geometrical "fact" that the origin 
is a double point of the folium of Descartes (§3.13). 

A fundamental theorem states that every divisor in the field 
of functions K on an algebraic curve, can, when suitable con
stants are adjoined, be written as a product of powers of places 
(§3.18). (This theorem relates divisors as they are treated in 
this book to divisors as they are customarily defined in the 
theory of algebraic curves as formal sums of places with inte
ger coefficients, or, equivalently, as formal products of places 
with integer exponents.) The degree of a divisor is equal to the 
number of places in the numerator of such a representation of 
the divisor minus the number of places in the denominator. 
The degree of the divisor of an element x of K is always 0, and 
the places in its numerator are naturally thought of as "the 
points where x is zero" and the places in its denominator as 
"the points where x has poles." 

Divisor theory also provides the following natural formula
tion of Abel's theorem: For any given function field (of one 
variable, over Q) there is a least integer g, the genus of the 
field, such that every divisor of degree 9 is equivalent to an in
tegral divisor. Otherwise stated, given a set of zeros and a set 
of poles, there is a function on the eurve with poles, at most, 
at the given poles and zeros at the g:iven zeros (plus, possibly, 
other zeros) provided the number of given poles is at least 9 
greater than the number of given zeros. This theorem is not 
immediately recognizable as Abel's theorem, but the connec
tion with Abel's own statement is explained in §3.25. (See also 
the Corollary of §3.27.) 
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An element of K can be expanded in a natural way in powers 
of a local parameter at a place P in K (§3.16). The principal 
part of an element of K at P, relative to a given local parameter 
at P, is the terms of this power series expansion which have 
negative degree. (In particular, the element of K has a pole 
at P if and only if its principal part at P, relative to any 
local parameter at P, is nonzero.) Let PI, P2 , ••• , Pk be a 
given set of places in the field K of rational functions on an 
algebraic curve, and let r be the elements of K which have 
poles only at the Pi and whose poles at the Pi have order N 
at most. The principal parts of an element of r are described 
by Nk constants of K. Abel's theorem easily implies that the 
principal parts of elements of r form a subspace of codimension 
at most g of Kfk. The Appendix is devoted to proving that 
this subspace of Kfk can be described in terms of differentials. 
Specifically, differentials are defined in the Appendix, and it 
is shown that (1) g is the dimension of the vector space (over 
the field of constants Ko of K) of holomorphic differentials, 
(2) the sum of the residues of any differential is zero, and 
(3) the conditions "any element of K times any holomorphic 
differential must have the sum of its residues equal to zero" 
give necessary and sufficient conditions for determining which 
elements of Kfk are principal parts of elements of r. (For 
N large, these conditions are also independent, so that the 
codimension is exactly g when N is large.) The lliemann-Roch 
theorem is a simple corollary of this method of determining the 
principal parts of elements of r. 

I wish once again to thank the Vaughn Foundation for more 
than a decade of support which made an enormous difference 
in my life and work. 
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