Undergraduate Texts in Mathematics

Editors

J.H. Ewing F.W. Gehring P.R. Halmos

Undergraduate Texts in Mathematics

Anglin: Mathematics: A Concise History and Philosophy. Readings in Mathematics. Apostol: Introduction to Analytic Number Theory. Second edition. Armstrong: Groups and Symmetry. Armstrong: Basic Topology. Bak/Newman: Complex Analysis. Banchoff/Wermer: Linear Algebra Through Geometry. Second edition. Berberian: A First Course in Real Analysis. Brémaud: An Introduction to Probabilistic Modeling. Bressoud: Factorization and Primality Testing. Bressoud: Second Year Calculus. Readings in Mathematics. Brickman: Mathematical Introduction to Linear Programming and Game Theory. Cederberg: A Course in Modern Geometries. Childs: A Concrete Introduction to Higher Algebra. Chung: Elementary Probability Theory with Stochastic Processes. Third edition. Cox/Little/O'Shea: Ideals, Varieties, and Algorithms. Curtis: Linear Algebra: An Introductory Approach. Fourth edition. Devlin: The Joy of Sets: Fundamentals of Contemporary Set Theory. Second edition. Dixmier: General Topology. Driver: Why Math? Ebbinghaus/Flum/Thomas: Mathematical Logic. Second edition. Edgar: Measure, Topology, and Fractal Geometry. Fischer: Intermediate Real Analysis. Flanigan/Kazdan: Calculus Two: Linear and Nonlinear Functions. Second edition. Fleming: Functions of Several Variables. Second edition. Foulds: Optimization Techniques: An Introduction. Foulds: Combinatorial Optimization for Undergraduates. Franklin: Methods of Mathematical Economics. Halmos: Finite-Dimensional Vector Spaces. Second edition. Halmos: Naive Set Theory. Hämmerlin/Hoffmann: Numerical Mathematics. Readings in Mathematics. Iooss/Joseph: Elementary Stability and Bifurcation Theory. Second edition. James: Topological and Uniform Spaces. Jänich: Topology. Kemeny/Snell: Finite Markov Chains. Klambauer: Aspects of Calculus. Kinsey: Topology of Surfaces. Lang: A First Course in Calculus. Fifth edition. Lang: Calculus of Several Variables. Third edition. Lang: Introduction to Linear Algebra. Second edition. Lang: Linear Algebra. Third edition. Lang: Undergraduate Algebra. Second edition. Lang: Undergraduate Analysis.

H.-D. Ebbinghaus J. Flum W. Thomas

Mathematical Logic Second Edition

With 13 Illustrations

Springer Science+Business Media, LLC

H.-D. Ebbinghaus J. Flum Mathematisches Institut Universität Freiburg Albertstrasse 23b 7800 Freiburg Germany

Editorial Board

J.H. Ewing Department of Mathematics Indiana University Bloomington, IN 47405 USA W. Thomas Institut für Informatik und Praktische Mathematik Universität Kiel D 24098 Kiel Germany

F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

Translated from *Einführung in die mathematische Logik*, published by Wissenschaftliche Buchgesellschaft, Darmstadt, by Ann S. Ferebee, Kohlweg 12, D-6240 Königstein 4, Germany.

Copyright 1978 of the original edition by Wissenschaftliche Buchgesellschaft, Darmstadt, Germany. (First published in the series: "Die Mathematik. Einführungen in Gegenstand und Ergebnisse ihrer Teilgebiete und Nachbarwissenschaften.")

AMS Subject Classification (1991): 03-01

Library of Congress Cataloging-in-Publication Data Ebbinghaus, Heinz-Dieter, 1939-[Einführung in die mathematische Logik.] Mathematical logic / H.-D. Ebbinghaus, J. Flum, W. Thomas. p. cm. -- (Undergraduate Texts in Mathematics) Includes bibliographical references and index. ISBN 978-1-4757-2357-1 ISBN 978-1-4757-2355-7 (eBook) DOI 10.1007/978-1-4757-2355-7

1. Logic, Symbolic and mathematical.I. Flum, Jörg.II. Thomas, Wolfgang, 1947-III. Title.IV. Series.QA9.E2213199493-50621511.3--dc2093-50621

Printed on acid-free paper.

© 1994 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1994 Softcover reprint of the hardcover 2nd edition 1994

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Jim Harbison; manufacturing supervised by Vincent Scelta. Camera-ready copy provided by the authors using Springer-Verlag's LaTeX macro svsing.sty.

987654321

ISBN 978-1-4757-2357-1

Preface

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs?

Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Gödel's completeness theorem, which shows that the consequence relation coincides with formal provability: By means of a calculus consisting of simple formal inference rules, one can obtain all consequences of a given axiom system (and in particular, imitate all mathematical proofs).

A short digression into model theory will help us to analyze the expressive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome—even in the framework of first-order logic—by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.

Gödel's incompleteness theorems are presented in connection with several related results (such as Trahtenbrot's theorem) which all exemplify the limitations of machine-oriented proof methods. The notions of computability theory that are relevant to this discussion are given in detail. The concept of computability is made precise by means of the register machine as a computer model.

We use the methods developed in the proof of Gödel's completeness theorem to discuss Herbrand's Theorem. This theorem is the starting point for a detailed description of the theoretical fundamentals of logic programming. The corresponding resolution method is first introduced on the level of propositional logic.

The deficiencies in expressive power of the first-order language are a motivation to look for stronger logical systems. In this context we introduce, among others, the second-order language and the infinitary languages. For each of them we prove that central facts which hold for the first-order language are no longer valid. Finally, this empirical fact is confirmed by Lindström's theorems, which show that there is no logical system that extends first-order logic and at the same time shares all its advantages.

The book does not require special mathematical knowledge; however, it presupposes an acquaintance with mathematical reasoning as acquired, for example, in the first year of a mathematics or computer science curriculum.

Margit Meßmer prepared the English translation of the extended German edition and the $I\!AT_E\!X$ -version of the book. We wish to thank her for her efficient and diligent work. For additional $I\!AT_E\!X$ -editing thanks are due to A. Miller and O. Matz. For helpful suggestions and/or careful proof-reading we also thank U. Bosse, G. Geisler, H. Imhof and J. C. Martinez.

Freiburg and Kiel, July 1993

H.-D. Ebbinghaus J. Flum W. Thomas

Contents

Preface		v		
PART	' A	1		
I Introduction				
§1.	An Example from Group Theory	4		
§2.	An Example from the Theory of Equivalence Relations	5		
§3.	A Preliminary Analysis	6		
§4.	Preview	8		
II Syı	ntax of First-Order Languages	11		
§1.	Alphabets	11		
§2.	The Alphabet of a First-Order Language	13		
§ 3 .	Terms and Formulas in First-Order Languages $\ldots \ldots \ldots$	15		
§4.	Induction in the Calculus of Terms and in the Calculus of Formulas	19		
§5.	Free Variables and Sentences	24		
III Se	mantics of First-Order Languages	27		
§1.	Structures and Interpretations	28		
§2.	Standardization of Connectives	31		
§3.	The Satisfaction Relation	32		
§4.	The Consequence Relation	33		
§5.	Two Lemmas on the Satisfaction Relation	40		
§6.	Some Simple Formalizations	44		
§7.	Some Remarks on Formalizability	48		
§8.	Substitution	52		

IV	7 A S	Sequent Calculus	59
	§1.	Sequent Rules	60
	§2.	Structural Rules and Connective Rules	62
	§3.	Derivable Connective Rules	63
	§4.	Quantifier and Equality Rules	66
	§5.	Further Derivable Rules and Sequents	68
	§6.	Summary and Example	69
	§7.	Consistency	72
\mathbf{v}	The	Completeness Theorem	75
	§1.	Henkin's Theorem	75
	§2.	Satisfiability of Consistent Sets of Formulas (the Countable Case)	79
	§3.	Satisfiability of Consistent Sets of Formulas (the General Case)	82
	§4.	The Completeness Theorem	85
V	[Th	e Löwenheim-Skolem and the Compactness Theorem	87
	§1.	The Löwenheim-Skolem Theorem	87
	§2.	The Compactness Theorem	88
	§3.	Elementary Classes	91
	§4.	Elementarily Equivalent Structures	94
\mathbf{V}	II TI	ne Scope of First-Order Logic	99
	§1.	The Notion of Formal Proof	99
	§2.	Mathematics Within the Framework of First-Order Logic .	103
	§3.	The Zermelo-Fraenkel Axioms for Set Theory	107
	§4.	Set Theory as a Basis for Mathematics	110
V	III S	yntactic Interpretations and Normal Forms	15
	§1.	Term-Reduced Formulas and Relational Symbol Sets	115
	§2.	Syntactic Interpretations	118
	§3.	Extensions by Definitions	125
	§4.	Normal Forms	128

PART B			135
IX	Ex	tensions of First-Order Logic	137
	§1.	Second-Order Logic	138
	§2.	The System $\mathcal{L}_{\omega_1\omega}$	142
	§ 3 .	The System \mathcal{L}_Q	148
x	Lim	itations of the Formal Method	151
	§1.	Decidability and Enumerability	152
	§2.	Register Machines	157
	§3.	The Halting Problem for Register Machines	163
	§4.	The Undecidability of First-Order Logic	167
	§5.	Trahtenbrot's Theorem and the Incompleteness of Second- Order Logic	170
	§6.	Theories and Decidability	173
	§7.	Self-Referential Statements and Gödel's Incompleteness Theorems	181
XI	Fre	e Models and Logic Programming	189
	§1.	Herbrand's Theorem	189
	§2.	Free Models and Universal Horn Formulas	193
	§3.	Herbrand Structures	198
	§4.	Propositional Logic	200
	§5.	Propositional Resolution	207
	§6.	First-Order Resolution (without Unification) $\ldots \ldots \ldots$	218
	§7.	Logic Programming	226
XI	I An ler	n Algebraic Characterization of Elementary Equiva- nce	243
	§1.	Finite and Partial Isomorphisms	244
	§2.	Fraïssé's Theorem	249
	§ 3 .	Proof of Fraïssé's Theorem	251
	§4.	Ehrenfeucht Games	258

x Contents

XIII Lindström's Theorems				
§1.	Logical Systems	261		
§2.	Compact Regular Logical Systems	264		
§3.	Lindström's First Theorem	266		
§4.	Lindström's Second Theorem	272		
References				
Symbol Index				
Subject Index				