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Preface 

What is a mathematical proof? How can proofs be justified? Are there 
limitations to provability? To what extent can machines carry out mathe
matical proofs? 

Only in this century has there been success in obtaining substantial and 
satisfactory answers. The present book contains a systematic discussion 
of these results. The investigations are centered around first-order logic. 
Our first goal is Godel's completeness theorem, which shows that the con
sequence relation coincides with formal provability: By means of a calcu
lus consisting of simple formal inference rules, one can obtain all conse
quences of a given axiom system (and in particular, imitate all mathemat
ical proofs). 

A short digression into model theory will help us to analyze the expres
sive power of the first-order language, and it will turn out that there are 
certain deficiencies. For example, the first-order language does not allow 
the formulation of an adequate axiom system for arithmetic or analysis. 
On the other hand, this difficulty can be overcome--even in the framework 
of first-order logic-by developing mathematics in set-theoretic terms. We 
explain the prerequisites from set theory necessary for this purpose and 
then treat the subtle relation between logic and set theory in a thorough 
manner. 

GOOel's incompleteness theorems are presented in connection with several 
related results (such as Trahtenbrot's theorem) which all exemplify the lim
itations of machine-oriented proof methods. The notions of computability 
theory that are relevant to this discussion are given in detail. The concept 
of computability is made precise by means of the register machine as a 
computer model. 

We use the methods developed in the proof of GOOel's completeness the
orem to discuss Herbrand's Theorem. This theorem is the starting point 
for a detailed description of the theoretical fundamentals of logic program
ming. The corresponding resolution method is first introduced on the level 
of propositional logic. 

The deficiencies in expressive power of the first-order language are a mo
tivation to look for stronger logical systems. In this context we introduce, 



vi 

among others, the second-order language and the infinitary languages. For 
each of them we prove that central facts which hold for the first-order 
language are no longer valid. Finally, this empirical fact is confirmed by 
Lindstrom's theorems, which show that there is no logical system that ex
tends first-order logic and at the same time shares all its advantages. 

The book does not require special mathematical knowledge; however, it 
presupposes an acquaintance with mathematical reasoning as acquired, for 
example, in the first year of a mathematics or computer science curriculum. 

Margit MeBmer prepared the English translation of the extended German 
edition and the Jb..TE]X-version of the book. We wish to thank her for her 
efficient and diligent work. For additional Jb..TE]X-editing thanks are due to 
A. Miller and O. Matz. For helpful suggestions and/or careful proof-reading 
we also thank U. Bosse, G. Geisler, H. Imhof and J. C. Martinez. 

Freiburg and Kiel, July 1993 H.-D. Ebbinghaus 
J. Flum 
W. Thomas 
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