
Graduate Texts in Mathematics 123 
Readings in Mathematics 

Editorial Board 
S. Axler F. W. Gehring P. R. Halmos 

Springer Science+Business Media, LLC 



Graduate Texts in Mathematics 
Readings in Mathematics 

Ebbinghaus/Hermes/Hirzebruch/KoecherlMainzer/Neukirch/PresteVRemmert: Numbers 
FultonlHarris: Representation Theory: A First Course 
Remmert: Theory of Complex Functions 

Undergraduate Texts in Mathematics 
Readings in Mathematics 

Anglin: Mathematics: A Concise History and Philosophy 
Anglin/Lambek: The Heritage of Thales 
Bressoud: Second Year Calculus 
HairerlWanner: Analysis by Its History 
Hămmerlin/Hoffmann: Numerical Mathematics 
Isaac: The Pleasures of Probability 
Samuel: Pmjective Geometry 



H. -D. Ebbinghaus H. Hermes 
F. Hirzebruch M. Koecher K. Mainzer 
J. Neukirch A. Prestel R. Remmert 

Numbers 

With an Introduction by K. Lamotke 
Translated by H.L.S. Orde 
Edited by J.H. Ewing 

With 24 Illustrations 

i Springer 



Heinz-Dieter Ebbinghaus 
Haos Hermes 
Mathematisches Institut 

Universitiit Freiburg 
AlbertstraBe 23b, D-79 104 

Freiburg, Germany 

Friedrich Hirzebruch 
Mao-Planck-Institut fUr 

Mathematik 
Gottfried-Claren-StraBe 26 
D-53225 Bonn, Germany 

Klaus Lamotke (Editor of 
German Edition) 

Mathematisches Institut 
der Universitiit zu KOln 

Weyertal 86-90, 050931 
Koln, Germany 

Editorial Board 

S. Axler 
Oepartment of Mathematics 
Michigan State University 
East Lansing, MI 48824, USA 

Max Koecher (1924-1990) 
Reinhold Remmert 
Mathematisches Institut 

Universitiit MUnster 
EinsteinstraBe 62 
0-48149 MUnster, Germany 

Klaus Mainzer 
Lehrstuhl fUr Philosophie und 

Wissenschaftstheorie 
Universitiit Augsburg 
UniversitiitsstraBe 10 
0-86195 Augsburg, Germany 

H.L.S. Orde (Translator) 
Bressenden 
Biddenden near Ashford 
Kent TN27 80U, UK 

F.W. Gehring 
Oepartment of Mathematics 
University of Michigan 
Ann Arbor, MI 48109, USA 

Mathematics Subject Classification (1991): II-XX, 11-03 

Library of Congress Call1loging-in Publication Data 
Zahlen, Grundwissen Mathematik 1. English 

Numbers I Heinz-Dieter Ebbinghaus ... [et al.]: with an 
introduction by Klaus Lamotke; translated by H.L.S. Orde; edited 
by John H. Ewing. 

p. cm.-(Readings in mathematics) 
Includes bibliographical references. 

1. Number theory. 1. Ebbinghaus, Heinz-Dieter. II. Ewing, 
John H. III. Series: Graduate texts in mathematics. Readings 
in mathematics. 

QA241.Z3413 1991 
512'.7-dc20 89-48588 

Printed on acid-free paper. 

JUrgen Neukirch 
Fachbereich Mathematik 
UniversitiitsstraBe 31 
0-93053 Regensburg, Germany 

Alexander Prestel 
Fakultiit fUr Mathematik 

Universitiit Konstanz 
Postfach 5560, 0-78434 

Konstanz, Germaoy 

John H. Ewing (Editor of 
English Edition) 

Oepartment of Mathematics 
Indiana University 
Bloomington, IN 47405, USA 

P.R. Halmos 
Oepartment of Mathematics 
Santa Clara University 
Santa Clara, CA 95053, USA 

This book is a translation of the second edition of lahlen, Grundwissen Mathematik 1, Springer-Verlag, 
1988. The present volume is the tirst softcover edition of the previously published hardcover version 
ISBN 978-0-387-97497-2 

© 1991 Springer Science+Business Media New York 
OriginaUy published by Springer-Verlag New York Inc. in 1991 
AU rights reserved. This work may not be translated or copied in whole or in part without the written permission 
of the publisher (Springer Scicnce+Business Media, LLC), except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form ofinformation storage and retrleval. electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, ete., in this publication, even if the former are 
not especiaUy identitied, is not to be taken as a sign that such names, as understood by the Trade Marks and 
Merchandise Marks Act. may accordingly be used freely by anyone. 

Camera-ready copy prepared using LaTEX. 

98 7 6 543 (Corrected third printing, 1995) 

ISBN 978-0-387-97497-2 

ISBN 978-0-387-97497-2 ISBN 978-1-4612-1005-4 (eBook) 
DOI 10.1007/978-1-4612-1005-4



Preface to the English Edition 

A book about numbers sounds rather dull. This one is not. Instead it is a 
lively story about one thread of mathematics-the concept of "number"­
told by eight authors and organized into a historical narrative that leads 
the reader from ancient Egypt to the late twentieth century. It is a story 
that begins with some of the simplest ideas of mathematics and ends with 
some of the most complex. It is a story that mathematicians, both amateur 
and professional, ought to know. 

Why write about numbers? Mathematicians have always found it diffi­
cult to develop broad perspective about their subject. While we each view 
our specialty as having roots in the past, and sometimes having connec­
tions to other specialties in the present, we seldom see the panorama of 
mathematical development over thousands of years. Numbers attempts to 
give that broad perspective, from hieroglyphs to K-theory, from Dedekind 
cuts to nonstandard analysis. Who first used the standard notation for 
7r (and who made it standard)? Who were the "quaternionists" (and can 
their zeal for quaternions tell us anything about the recent controversy 
concerning Chaos)? What happened to the endless supply of "hypercom­
plex numbers" or to quaternionic function theory? How can the study of 
maps from projective space to itself give information about algebras? How 
did mathematicians resurrect the "ghosts of departed quantities" by rein­
troducing infinitesimals after 200 years? How can games be numbers and 
numbers be games? This is mathematical culture, but it's not the sort of 
culture one finds in scholarly tomes; it's lively culture, meant to entertain 
as well as to inform. 

This is not a book for the faint-hearted, however. While it starts with 
material that every undergraduate could (and should) learn, the reader is 
progressively challenged as the chapters progress into the twentieth century. 
The chapters often tell about people and events, but they primarily tell 
about mathematics. Undergraduates can certainly read large parts of this 
book, but mastering the material in late chapters requires work, even for 
mature mathematicians. This is a book that can be read on several levels, 
by amateurs and professionals alike. 

The German edition of this book, Zahlen, has been quite successful. 
There was a temptation to abbreviate the English language translation 
by making it less complete and more compact. We have instead tried to 
produce a faithful translation of the entire original, which can serve as a 
scholarly reference as well as casual reading. For this reason, quotations 



Vi Preface to the English Edition 

are included along with translations and references to source material in 
foreign languages are included along with additional references (usually 
more recent) in English. 

Translations seldom come into the world without some labor pains. Au­
thors and translators never agree completely, especially when there are 
eight authors and one translator, all of whom speak both languages. My 
job was to act as referee in questions of language and style, and I did so in 
a way that likely made neither side happy. I apologize to all. 

Finally, I would like to thank my colleague, Max Zorn, for his helpful 
advice about terminology, especially his insistence on the word "octonions" 
rather than "octaves." 

March 1990 John Ewing 



Preface to Second Edition 

The welcome which has been given to this book on numbers has pleasantly 
surprised the authors and the editor. The scepticism which some of us had 
felt about its concept has been dispelled by the reactions of students, col­
leagues and reviewers. We are therefore very glad to bring out a second 
edition-much sooner than had been expected. We have willingly taken up 
the suggestion of readers to include an additional chapter by J. NEUKIRCH 

on p-adic numbers. The chapter containing the theorems of FROBENIUS 

and HOPF has been enlarged to include the GELFAND-MAZUR theorem. 
We have also carefully revised all the other chapters and made some im­
provements in many places. In doing so we have been able to take account 
of many helpful comments made by readers for which we take this opportu­
nity of thanking them. P. ULLRICH of Miinster who had already prepared 
the name and subject indexes for the first edition has again helped us with 
the preparation of the second edition and deserves our thanks. 

Oberwolfach, March 1988 Authors and Publisher 



Preface to First Edition 

The basic mathematical knowledge acquired by every mathematician in the 
course of his studies develops into a unified whole only through an aware­
ness of the multiplicity of relationships between the individual mathemat­
ical theories. Interrelationships between the different mathematical disci­
plines often reveal themselves by studying historical development. One of 
the main underlying aims of this series is to make the reader aware that 
mathematics does not consist of isolated theories, developed side by side, 
but should be looked upon as an organic whole. 

The present book on numbers represents a departure from the other vol­
umes of the series inasmuch as seven authors and an editor have together 
contributed thirteen chapters. In conversations with one another the au­
thors agreed on their contributions, and the editor endeavored to bring 
them into harmony by reading the contributions with a critical eye and 
holding subsequent discussions with the authors. The other volumes of the 
series can be studied independently of this one. 

While it is impossible to name here all those who have helped us by 
their comments, we should nevertheless like to mention particularly Herr 
Gericke (of Freiburg) who helped us on many occasions to present the 
historical development in its true perspective. 

K. Peters (at that time with Springer-Verlag) played a vital part in 
arranging the first meeting between the publisher and the authors. The 
meetings were made possible by the financial support of the Volkswagen 
Foundation and Springer-Verlag, as well as by the hospitality of the Math­
ematical Research Institute in Oberwolfach. 

To all of these we extend our gratitude. 

Oberwolfach, July 1983 Authors and Editor 
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