Graduate Texts in Mathematics 123 Readings in Mathematics

Editorial Board S. Axler F. W. Gehring P. R. Halmos

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

Readings in Mathematics

Ebbinghaus/Hermes/Hirzebruch/Koecher/Mainzer/Neukirch/Prestel/Remmert: Numbers Fulton/Harris: Representation Theory: A First Course Remmert: Theory of Complex Functions

Undergraduate Texts in Mathematics

Readings in Mathematics

Anglin: Mathematics: A Concise History and Philosophy Anglin/Lambek: The Heritage of Thales Bressoud: Second Year Calculus Hairer/Wanner: Analysis by Its History Hämmerlin/Hoffmann: Numerical Mathematics Isaac: The Pleasures of Probability Samuel: Projective Geometry H.-D. Ebbinghaus H. Hermes

F. Hirzebruch M. Koecher K. Mainzer

J. Neukirch A. Prestel R. Remmert

Numbers

With an Introduction by K. Lamotke Translated by H.L.S. Orde Edited by J.H. Ewing

With 24 Illustrations

Heinz-Dieter Ebbinghaus Hans Hermes Mathematisches Institut Universität Freiburg Albertstraße 23b, D-79104	Max Koecher (1924–1990) Reinhold Remmert Mathematisches Institut Universität Münster Einsteinstraße 62	Jürgen Neukirch Fachbereich Mathematik Universitätsstraße 31 D-93053 Regensburg, Germany
Freiburg, Germany	D-48149 Münster, Germany	Alexander Prestel Fakultät für Mathematik
Friedrich Hirzebruch	Klaus Mainzer	Universität Konstanz
Man-Planck-Institut für Mathematik	Lehrstuhl für Philosophie und Wissenschaftstheorie	Postfach 5560, D-78434 Konstanz, Germany
Gottfried-Claren-Straße 26	Universität Augsburg	
D-53225 Bonn, Germany	Universitätsstraße 10 D-86195 Augsburg, Germany	John H. Ewing (<i>Editor of</i> English Edition)
Klaus Lamotke (Editor of German Edition)	H.L.S. Orde (Translator)	Department of Mathematics Indiana University
Mathematisches Institut der Universität zu Köln	Bressenden Biddenden near Ashford	Bloomington, IN 47405, USA
Weyertal 86–90, D50931 Köln, Germany	Kent TN27 8DU, UK	
Editorial Board		
S. Axler Department of Mathematics Michigan State University	F.W. Gehring Department of Mathematics University of Michigan	P.R. Halmos Department of Mathematics Santa Clara University

Ann Arbor, MI 48109, USA

Santa Clara, CA 95053, USA

Mathematics Subject Classification (1991): 11-XX, 11-03

Library of Congress Cataloging-in Publication Data Zahlen, Grundwissen Mathematik 1. English Numbers / Heinz-Dieter Ebbinghaus . . . [et al.]: with an introduction by Klaus Lamotke; translated by H.L.S. Orde; edited by John H. Ewing. p. cm.—(Readings in mathematics) Includes bibliographical references. ISBN 978-0-387-97497-2 ISBN 978-1-4612-1005-4 (eBook) DOI 10.1007/978-1-4612-1005-4 1. Number theory. I. Ebbinghaus, Heinz-Dieter. II. Ewing, John H. III. Series: Graduate texts in mathematics. Readings in mathematics. QA241.Z3413 1991 512'.7-dc20 89-48588

Printed on acid-free paper.

East Lansing, MI 48824, USA

This book is a translation of the second edition of *Zahlen*, Grundwissen Mathematik 1, Springer-Verlag, 1988. The present volume is the first softcover edition of the previously published hardcover version ISBN 978-0-387-97497-2

© 1991 Springer Science+Business Media New York

Originally published by Springer-Verlag New York Inc. in 1991

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval. electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act. may accordingly be used freely by anyone.

Camera-ready copy prepared using LaT_EX.

9876543 (Corrected third printing, 1995)

ISBN 978-0-387-97497-2

Preface to the English Edition

A book about numbers sounds rather dull. This one is not. Instead it is a lively story about one thread of mathematics—the concept of "number"—told by eight authors and organized into a historical narrative that leads the reader from ancient Egypt to the late twentieth century. It is a story that begins with some of the simplest ideas of mathematics and ends with some of the most complex. It is a story that mathematicians, both amateur and professional, ought to know.

Why write about numbers? Mathematicians have always found it difficult to develop broad perspective about their subject. While we each view our specialty as having roots in the past, and sometimes having connections to other specialties in the present, we seldom see the panorama of mathematical development over thousands of years. Numbers attempts to give that broad perspective, from hieroglyphs to K-theory, from Dedekind cuts to nonstandard analysis. Who first used the standard notation for π (and who made it standard)? Who were the "quaternionists" (and can their zeal for quaternions tell us anything about the recent controversy concerning Chaos)? What happened to the endless supply of "hypercomplex numbers" or to quaternionic function theory? How can the study of maps from projective space to itself give information about algebras? How did mathematicians resurrect the "ghosts of departed quantities" by reintroducing infinitesimals after 200 years? How can games be numbers and numbers be games? This is mathematical culture, but it's not the sort of culture one finds in scholarly tomes; it's lively culture, meant to entertain as well as to inform.

This is not a book for the faint-hearted, however. While it starts with material that every undergraduate could (and should) learn, the reader is progressively challenged as the chapters progress into the twentieth century. The chapters often tell about people and events, but they primarily tell about mathematics. Undergraduates can certainly read large parts of this book, but mastering the material in late chapters requires work, even for mature mathematicians. This is a book that can be read on several levels, by amateurs and professionals alike.

The German edition of this book, Zahlen, has been quite successful. There was a temptation to abbreviate the English language translation by making it less complete and more compact. We have instead tried to produce a faithful translation of the entire original, which can serve as a scholarly reference as well as casual reading. For this reason, quotations are included along with translations and references to source material in foreign languages are included along with additional references (usually more recent) in English.

Translations seldom come into the world without some labor pains. Authors and translators never agree completely, especially when there are eight authors and one translator, all of whom speak both languages. My job was to act as referee in questions of language and style, and I did so in a way that likely made neither side happy. I apologize to all.

Finally, I would like to thank my colleague, Max Zorn, for his helpful advice about terminology, especially his insistence on the word "octonions" rather than "octaves."

March 1990

John Ewing

Preface to Second Edition

The welcome which has been given to this book on numbers has pleasantly surprised the authors and the editor. The scepticism which some of us had felt about its concept has been dispelled by the reactions of students, colleagues and reviewers. We are therefore very glad to bring out a second edition—much sooner than had been expected. We have willingly taken up the suggestion of readers to include an additional chapter by J. NEUKIRCH on *p*-adic numbers. The chapter containing the theorems of FROBENIUS and HOPF has been enlarged to include the GELFAND-MAZUR theorem. We have also carefully revised all the other chapters and made some improvements in many places. In doing so we have been able to take account of many helpful comments made by readers for which we take this opportunity of thanking them. P. ULLRICH of Münster who had already prepared the name and subject indexes for the first edition has again helped us with the preparation of the second edition and deserves our thanks.

Oberwolfach, March 1988

Authors and Publisher

Preface to First Edition

The basic mathematical knowledge acquired by every mathematician in the course of his studies develops into a unified whole only through an awareness of the multiplicity of relationships between the individual mathematical theories. Interrelationships between the different mathematical disciplines often reveal themselves by studying historical development. One of the main underlying aims of this series is to make the reader aware that mathematics does not consist of isolated theories, developed side by side, but should be looked upon as an organic whole.

The present book on numbers represents a departure from the other volumes of the series inasmuch as seven authors and an editor have together contributed thirteen chapters. In conversations with one another the authors agreed on their contributions, and the editor endeavored to bring them into harmony by reading the contributions with a critical eye and holding subsequent discussions with the authors. The other volumes of the series can be studied independently of this one.

While it is impossible to name here all those who have helped us by their comments, we should nevertheless like to mention particularly Herr Gericke (of Freiburg) who helped us on many occasions to present the historical development in its true perspective.

K. Peters (at that time with Springer-Verlag) played a vital part in arranging the first meeting between the publisher and the authors. The meetings were made possible by the financial support of the Volkswagen Foundation and Springer-Verlag, as well as by the hospitality of the Mathematical Research Institute in Oberwolfach.

To all of these we extend our gratitude.

Oberwolfach, July 1983

Authors and Editor

Contents

Pre,	face to the English Edition	v
Pre	face to Second Edition	vii
Pre	face to First Edition	ix
Intr	oduction, K. Lamotke	1
Par	t A. From the Natural Numbers, to the Complex Numbers, to the p -adics	7
Cha	upter 1. Natural Numbers, Integers, and Rational Numbers. K. Mainzer	9
§1.	Historical 1. Egyptians and Babylonians. 2. Greece. 3. Indo-Arabic Arithmetical Pratice. 4. Modern Times	9
§2.	 Natural Numbers 1. Definition of the Natural Numbers. 2. The Recursion Theorem and the Uniqueness of N. 3. Addition, Multiplication and Ordering of the Natural Numbers. 4. PEANO'S Axioms 	14
§3.	 The Integers 1. The Additive Group Z. 2. The Integral Domain Z. 3. The Order Relation in Z 	19
§4.	The Rational Numbers 1. Historical. 2. The Field \mathbb{Q} . 3. The Ordering of \mathbb{Q}	22
Ref	erences	23
Cha	upter 2. Real Numbers. K. Mainzer	27
§1.	Historical 1. HIPPASUS and the Pentagon. 2. EUDOXUS and the Theory of Proportion. 3. Irrational Numbers in Modern Mathematics. 4. The Formulation of More Precise Definitions in the Nineteenth Century	27
§2.	DEDEKIND Cuts 1. The Set \mathbb{R} of Cuts. 2. The Order Relation in \mathbb{R} .	36

Contents

	3. Addition in \mathbb{R} . 4. Multiplication in \mathbb{R}	
§3.	Fundamental Sequences	39
0	1. Historical Remarks. 2. CAUCHY's Criterion for	
	Convergence. 3. The Ring of Fundamental Sequences.	
	4. The Residue Class Field F/N of Fundamental Sequences	
	Modulo the Null Sequence. 5. The Completely Ordered Residue	
	Class Field F/N	
§4.	Nesting of Intervals	43
0 = -	1. Historical Remarks. 2. Nested Intervals and Completeness	10
§5.	Axiomatic Definition of Real Numbers	46
30.	1. The Natural Numbers, the Integers, and the Rational	10
	Numbers in the Real Number Field. 2. Completeness Theorem.	
	3. Existence and Uniqueness of the Real Numbers	
Rofo	rences	51
Itelei	ICHICES	91
Char	oter 3. Complex Numbers. R. Remmert	55
Unup	ter 9. Compter Humbers. It. Reminert	00
§1.	Genesis of the Complex Numbers	56
52.	1. CARDANO (1501–1576). 2. BOMBELLI (1526–1572).	00
	3. Descartes (1596–1650), Newton (1643–1727)	
	and LEIBNIZ (1646–1716). 4. EULER (1707–1783).	
	5. WALLIS $(1616-1703)$, WESSEL $(1745-1818)$ and	
	Argand $(1768-1822)$. 6. Gauss $(1777-1855)$.	
	7. CAUCHY (1789–1857). 8. HAMILTON (1805–1865).	
6 0	9. Later Developments	65
§2.	The Field \mathbb{C}	65
	1. Definition by Pairs of Real Numbers. 2. The Imaginary	
	Unit <i>i</i> . 3. Geometric Representation. 4. Impossibility of Ordering the Field C 5. Representation her Manual	
	Ordering the Field \mathbb{C} . 5. Representation by Means	
69	of 2×2 Real Matrices	771
§3.	Algebraic Properties of the Field \mathbb{C}	71
	1. The Conjugation $\mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$. 2. The Field	
	Automorphisms of \mathbb{C} . 3. The Natural Scalar Product	
	$\operatorname{Re}(w\overline{z})$ and Euclidean Length $ z $. 4. Product Rule and	
	the "Two Squares" Theorem. 5. Quadratic Roots and	
	Quadratic Equations. 6. Square Roots and nth Roots	=0
§4.	Geometric Properties of the Field \mathbb{C}	78
	1. The Identity $\langle w, z \rangle^2 + \langle iw, z \rangle^2 = w ^2 z ^2$. 2. Cosine Theorem	
	and the Triangle Inequality. 3. Numbers on Straight Lines	
	and Circles. Cross-Ratio. 4. Cyclic Quadrilaterals and Cross-	
0 -	Ratio. 5. PTOLEMY'S Theorem. 6. WALLACE'S Line.	٥ ٣
§5.	The Groups $O(\mathbb{C})$ and $SO(2)$	85
	1. Distance Preserving Mappings of \mathbb{C} . 2. The Group $O(\mathbb{C})$.	
	3. The Group $SO(2)$ and the Isomorphism $S^1 \to SO(2)$.	

xii

§6.	 4. Rational Parametrization of Properly Orthogonal 2 × 2 Matrices. Polar Coordinates and nth Roots 1. Polar Coordinates. 2. Multiplication of Complex Numbers in Polar Coordinates. 3. DE MOIVRE's Formula. 4. Roots in Unity. 	89
Chap	oter 4. The Fundamental Theorem of Algebra. R. Remmert	97
§1.	On the History of the Fundamental Theorem 1. GIRARD (1595-1632) and DESCARTES (1596-1650). 2. LEIBNIZ (1646-1716). 3. EULER (1707-1783). 4. D'ALEMBERT (1717-1783). 5. LAGRANGE (1736-1813) and LAPLACE (1749-1827). 6. GAUSS'S Critique. 7. GAUSS'S Four Proofs. 8. ARGAND (1768-1822) and CAUCHY (1798-1857). 9. The Fundamental Theorem of Algebra: Then and Now. 10. Brief Biographical Notes on Carl Friedrich GAUSS	98
§2.	Proof of the Fundamental Theorem Based on ARGAND 1. CAUCHY'S Minimum Theorem. 2. Proof of the Fundamental Theorem. 3. Proof of ARGAND'S Inequality. 4. Variant of the Proof. 5. Constructive Proofs of the Fundamental Theorem.	111
§3.	 Application of the Fundamental Theorem 1. Factorization Lemma. 2. Factorization of Complex Polynomials. 3. Factorization of Real Polynomials. 4. Existence of Eigenvalues. 5. Prime Polynomials in C[Z] and R[X]. 6. Uniqueness of C. 7. The Prospects for "Hypercomplex Numbers." 	115
Appe	endix. Proof of the Fundamental Theorem, after LAPLACE 1. Results Used. 2. Proof. 3. Historical Note	120
Chap	oter 5. What is π ? R. Remmert	123
§1.	On the History of π 1. Definition by Measuring a Circle. 2. Practical Approxi- mations. 3. Systematic Approximation. 4. Analytical Formulae. 5. BALTZER'S Definition. 6. LANDAU and His Contemporary Critics	124
§2.	The Exponential Homomorphism exp: $\mathbb{C} \to \mathbb{C}^{\times}$ 1. The Addition Theorem. 2. Elementary Consequences. 3. Epimorphism Theorem. 4. The Kernel of the Exponential Homomorphism. Definition of π . Appendix. Elementary Proof of Lemma 3.	131
§3.	Classical Characterizations of π 1. Definitions of $\cos z$ and $\sin z$. 2. Addition Theorem.	137

xiii

§4.	 The Number π and the Zeros of cos z and sin z. 4. The Number π and the Periods of exp z, cos z and sin z. 5. The Inequality sin y > 0 for 0 < y < π and the Equation e^{i π/2} = i. The Polar Coordinate Epimorphism p: ℝ → S¹. 7. The Number π and the Circumference and Area of a Circle. Classical Formulae for π LEIBNIZ'S Series for π. 2. VIETA'S Product Formula for π. EULER'S Product for the Sine and WALLIS'S Product for π. EULER'S Series for π², π⁴, 5. The WEIERSTRASS Definition of π. 6. The Irrationality of π and Its Continued Fraction Expansion. 7. Transcendence of π. 	142
Chaj	pter 6. The p-Adic Numbers. J. Neukirch	155
§1. §2. §3. §4. Refe	Numbers as Functions The Arithmetic Significance of the <i>p</i> -Adic Numbers The Analytical Nature of <i>p</i> -Adic Numbers The <i>p</i> -Adic Numbers rences	$155 \\ 162 \\ 166 \\ 173 \\ 177$
Part	t B. Real Division Algebras	179
Intro	oduction, M. Koecher, R. Remmert	181
Repe	ertory. Basic Concepts from the Theory of Algebras, M. Koecher, R. Remmert	183
	1. Real Algebras. 2. Examples of Real Algebras. 3. Subalgebras and Algebra Homomorphisms. 4. Determination of All One- Dimensional Algebras. 5. Division Algebras. 6. Construction of Algebras by Means of Bases	
Chap	oter 7. Hamilton's Quaternions. M. Koecher, R. Remmert	189
Intrc §1.	oduction The Quaternion Algebra \mathbb{H} 1. The Algebra \mathbb{H} of the Quaternions. 2. The Matrix Algebra \mathcal{H} and the Isomorphism $F:\mathbb{H} \to \mathcal{H}$. 3. The Imaginary Space of \mathbb{H} . 4. Quaternion Product, Vector Product and Scalar Product. 5. Noncommutativity of \mathbb{H} . The Center. 6. The Endomorphisms of the \mathbb{R} -Vector Space \mathbb{H} . 7. Quaternion Multiplication and Vector Analysis. 8. The Fundamental Theorem of Algebra for Quaternions.	189 194
§2 .	The Algebra \mathbb{H} as a Euclidean Vector Space 1. Conjugation and the Linear Form $\mathbb{R}e$. 2. Properties of	206

	the Scalar Product. 3. The "Four Squares Theorem". 4. Preservation of Length, and of the Conjugacy Relation Under Automorphisms. 5. The Group S^3 of Quaternions of Length 1. 6. The Special Unitary Group $SU(2)$ and the	
§3.	Isomorphism $S^3 \to SU(2)$. The Orthogonal Groups $O(3)$, $O(4)$ and Quaternions 1. Orthogonal Groups. 2. The Group $O(\mathbb{H})$. CAYLEY's Theorem. 3. The Group $O(\operatorname{Im}\mathbb{H})$. HAMILTON'S Theorem. 4. The Epimorphisms $S^3 \to SO(3)$ and $S^3 \times S^3 \to SO(4)$. 5. Axis of Rotation and Angle of Rotation. 6. EULER'S Parametric Representation of $SO(3)$.	213
Chaj	oter 8. The Isomorphism Theorems of FROBENIUS, HOPF and GELFAND-MAZUR. M. Koecher, R. Remmert	221
Intro	oduction	221
§1.		223
	 The Purely Imaginary Elements of an Algebra. Hamiltonian Triple. 3. Existence of Hamiltonian Triples in Alternative Algebras. 4. Alternative Algebras. 	
§2.		227
0-	 FROBENIUS'S Lemma. 2. Examples of Quadratic Algebras. Quaternions Lemma. 4. Theorem of FROBENIUS (1877) 	
§3.	HOPF's Theorem 1. Topologization of Real Algebras. 2. The Quadratic Mapping $\mathcal{A} \to \mathcal{A}, x \mapsto x^2$. HOPF's Lemma. 3. HOPF's Theorem. 4. The Original Proof by HOPF. 5. Description of All 2-Dimensional Algebras with Unit Element	230
§4.	0	238
Chap	pter 9. CAYLEY Numbers or Alternative Division Algebras. M. Koecher, R. Remmert	249
§1.	Alternative Quadratic Algebras	250
J	 Quadratic Algebras. 2. Theorem on the Bilinear Form. Theorem on the Conjugation Mapping. 4. The Triple Product Identity. 5. The Euclidean Vector Space A and 	
§2.	the Orthogonal Group $O(\mathcal{A})$ Existence and Properties of Octonions	256
32.	1. Construction of the Quadratic Algebra \mathbb{O} of Octonions.	200

§3.	 The Imaginary Space, Linear Form, Bilinear Form, and Conjugation of O. 3. O as an Alternative Division Algebra. 4. The "Eight-Squares" Theorem. 5. The Equation O = H ⊕ Hp. 6. Multiplication Table for O Uniqueness of the CAYLEY Algebra Duplication Theorem. 2. Uniqueness of the CAYLEY Algebra (Zorn 1933). 3. Description of O by ZORN's Vector Matrices 	261
Chap	oter 10. Composition Algebras. HURWITZ's Theorem— Vector-Product Algebras. M. Koecher, R. Remmert	265
§1.	 Composition Algebras 1. Historical Remarks on the Theory of Composition. 2. Examples. 3. Composition Algebras with Unit Element. 4. Structure Theorem for Composition Algebras with Unit Element 	267
§2.	Mutation of Composition Algebras 1. Mutation of Algebras. 2. Mutation Theorem for Finite- Dimensional Composition Algebras. 3. HURWITZ's Theorem (1898)	272
§3.	Vector-Product Algebras 1. The Concept of a Vector-Product Algebra. 2. Construction of Vector-Product Algebras. 3. Specification of all Vector- Product Algebras. 4. MALCEV-Algebras. 5. Historical Remarks	275
Chap	oter 11. Division Algebras and Topology. F. Hirzebruch	281
§1.	The Dimension of a Division Algebra Is a Power of 2 1. Odd Mappings and HOPF's Theorem. 2. Homology and Cohomology with Coefficients in F_2 . 3. Proof of HOPF's Theorem. 4. Historical Remarks on Homology and Cohomology Theory. 5. STIEFEL's Characteristic Homology Classes	281
§2.	The Dimension of a Division Algebra Is 1, 2, 4 or 8 1. The mod 2 Invariants $\alpha(f)$. 2. Parallelizability of Spheres and Division Algebras. 3. Vector Bundles. 4. WHITNEY'S Characteristic Cohomology Classes. 5. The Ring of Vector Bundles. 6. Bott Periodicity. 7. Characteristic Classes of Direct Sums and Tensor Products. 8. End of the Proof. 9. Historical Remarks	290
§3.	 Additional Remarks 1. Definition of the HOPF Invariant. 2. The HOPF Construction. 3. ADAMS's Theorem on the HOPF Invariants. 4. Summary. 5. ADAMS's Theorem About Vector Fields on Spheres 	299

Con	tents	xvii
Refe	erences	301
Par	t C. Infinitesimals, Games, and Sets	303
Cha	pter 12. Nonstandard Analysis. A. Prestel	305
§1. §2.	Introduction The Nonstandard Number Domain $*\mathbb{R}$ 1. Construction of $*\mathbb{R}$. 2. Properties of $*\mathbb{R}$	$\begin{array}{c} 305\\ 309 \end{array}$
§3. §4.	Features Common to R and *R Differential and Integral Calculus 1. Differentiation. 2. Integration	$\begin{array}{c} 316\\ 321 \end{array}$
-	ogue erences	$\frac{326}{327}$
Cha	pter 13. Numbers and Games. H. Hermes	329
§1.	Introduction 1. The Traditional Construction of the Real Numbers. 2. The Conway Method. 3. Synopsis	329
§2.	 The CONWAY Method. 3. Synopsis CONWAY Games Discussion of the DEDEKIND Postulates. 2. CONWAY's Modification of the DEDEKIND Postulates. 3. CONWAY Games 	331
§3.	Games 1. The Concept of a Game. 2. Examples of Games. 3. An Induction Principle for Games	334
§4.	On the Theory of Games 1. Winning Strategies. 2. Positive and Negative Games. 3. A Classification of Games	336
§5.	 A Partially Ordered Group of Equivalent Games 1. The Negative of a Game. 2. The Sum of Two Games. 3. Isomorphic Games. 4. A Partial Ordering of Games. 5. Equality of Games 	339
§6.	Games and CONWAY Games 1. The Fundamental Mappings. 2. Extending to CONWAY Games the Definitions of the Relations and Operations Defined for Games. 3. Examples	343
§7.	CONWAY Numbers 1. The CONWAY Postulates (C1) and (C2). 2. Elementary Properties of the Order Relation. 3. Examples	346
§8.	The Field of CONWAY Numbers 1. The Arithmetic Operations for Numbers. 2. Examples. 3. Properties of the Field of Numbers	349
Refe	erences	353

Contents

Cha	upter 14. Set Theory and Mathematics.	
	HD. Ebbinghaus	355
Intr	Introduction	
§1.	Sets and Mathematical Objects	358
	1. Individuals and More Complex Objects. 2. Set	
	Theoretical Definitions of More Complex Objects.	
	3. Urelements as Sets	
§2.	Axiom Systems of Set Theory	363
-	1. The RUSSELL Antinomy. 2. ZERMELO's and the ZERMELO-	
	FRAENKEL Set Theory. 3. Some Consequences. 4. Set	
	Theory with Classes	
§3.	Some Metamathematical Aspects	372
0	1. The VON NEUMANN Hierarchy. 2. The Axiom of Choice.	
	3. Independence Proofs	
Epi	logue	378
-	erences	378
Nar	ne Index	381
Sub	ject Index	387
Por	traits of Famous Mathematicians	393

xviii