American Mathematical Society

Colloquium Publications
Volume 50

Diffusions, Superdiffusions and Partial Differential Equations

E. B. Dynkin

American Mathematical Society Providence, Rhode Island

Contents

Preface	ix
Chapter 1. Introduction	1
1. Brownian and super-Brownian motions and differential equa	
2. Exceptional sets in analysis and probability	5
3. Positive solutions and their boundary traces	7
5. I ositive solutions and their boundary traces	•
Part 1. Parabolic Equations and Branching Exit Markov	Systems 11
Chapter 2. Linear Parabolic Equations and Diffusions	13
1. Fundamental solution of a parabolic equation	13
2. Diffusions	15
3. Poisson operators and parabolic functions	18
4. Regular part of the boundary	22
5. Green's operators and equation $\dot{u} + Lu = -\rho$	27
6. Notes	30
Chapter 3. Branching Exit Markov Systems	33
1. Introduction	33
2. Transition operators and V-families	36
3. From a V-family to a BEM system	39
4. Some properties of BEM systems	46
5. Notes	48
Chapter 4. Superprocesses	49
1. Definition and the first results	49
2. Superprocesses as limits of branching particle systems	53
3. Direct construction of superprocesses	54
4. Supplement to the definition of a superprocess	58
5. Graph of X	60
6. Notes	64
Chapter 5. Semilinear Parabolic Equations and Superdiffusions	67
1. Introduction	67
2. Connections between differential and integral equations	68
3. Absolute barriers	70
4. Operators V_Q	75
5. Boundary value problems	78
6. Notes	81

vi CONTENTS

Part 2. Elliptic Equations and Diffusions	83
Chapter 6. Linear Elliptic Equations and Diffusions	85
1. Basic facts on second order elliptic equations	85
2. Time homogeneous diffusions	90
3. Probabilistic solution of equation $Lu = au$	94
4. Notes	96
Chapter 7. Positive Harmonic Functions	97
1. Martin boundary	97
2. The existence of an exit point $\xi_{\zeta_{-}}$ on the Martin boundary	99
3. h-transform	102
4. Integral representation of positive harmonic functions	103
5. Extreme elements and the tail σ -algebra	106
6. Notes	107
Chapter 8. Moderate Solutions of $Lu = \psi(u)$	109
1. Introduction	109
2. From parabolic to elliptic setting	109
3. Moderate solutions	113
4. Sweeping of solutions 5. Lattice structure of \mathcal{U}	116
5. Lattice structure of \mathcal{U} 6. Notes	118 121
0. 110165	121
Chapter 9. Stochastic Boundary Values of Solutions	123
1. Stochastic boundary values and potentials	123
2. Classes \mathfrak{Z}_1 and \mathfrak{Z}_0	126
3. A relation between superdiffusions and conditional diffusions	128
4. Notes	130
Chapter 10. Rough Trace	131
1. Definition and preliminary discussion	131
2. Characterization of traces	135
3. Solutions w_B with Borel B	137
4. Notes	141
Chapter 11. Fine Trace	143
1. Singularity set $SG(u)$	143
2. Convexity properties of V_D	145
3. Functions J_u	146
4. Properties of $SG(u)$ 5. Fine topology in E'	150 151
6. Auxiliary propositions	151 152
7. Fine trace	153
8. On solutions w_O	155
9. Notes	156
Chapter 12. Martin Capacity and Classes \mathcal{N}_1 and \mathcal{N}_0	157
1. Martin capacity	$157 \\ 158$
2. Auxiliary propositions 3. Proof of the main theorem	160

CONTENTS vii

4. Notes	102
Chapter 13. Null Sets and Polar Sets	163
1. Null sets	163
2. Action of diffeomorphisms on null sets	165
3. Supercritical and subcritical values of α	167
4. Null sets and polar sets	169
5. Dual definitions of capacities	172
6. Truncating sequences	174
7. Proof of the principal results	182
8. Notes	188
0. 110103	100
Chapter 14. Survey of Related Results	193
1. Branching measure-valued processes	193
2. Additive functionals	195
3. Path properties of the Dawson-Watanabe superprocess	197
4. A more general operator L	198
5. Equation $Lu = -\psi(u)$	199
6. Equilibrium measures for superdiffusions	199
7. Moments of higher order	201
8. Martingale approach to superdiffusions	203
9. Excessive functions for superdiffusions and the corresponding	
h-transforms	204
10. Infinite divisibility and the Poisson representation	205
11. Historical superprocesses and snakes	207
Appendix A. Basic Facts on Markov Processes and Martingales	209
1. Multiplicative systems theorem	203
2. Stopping times	210
3. Markov processes	210
4. Martingales	214
Appendix B. Facts on Elliptic Differential Equations	217
1. Introduction	217
2. The Brandt and Schauder estimates	217
3. Upper bound for the Poisson kernel	218
Epilogue	221
1	221
1. σ-moderate solutions	
2. Exceptional boundary sets	221
3. Exit boundary for a superdiffusion	222
Bibliography	225
Subject Index	233
Notation Index	235