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Introduction 

1. We begin by giving a simple example of a partial differential inequality that 
occurs in an elementary physics problem. 

We consider a fluid with pressure u(x, t) at the point x at the instant t that 
occupies a region Q oflR 3 bounded by a membrane r of negligible thickness that, 
however, is semi-permeable, i. e., a membrane that permits the fluid to enter Q 

freely but that prevents all outflow of fluid. 
One can prove then (cf. the details in Chapter 1, Section 2.2.1) that 

au (aZu azu aZu) 
-a - du = g du = -a z + -a z + -a z 

t Xl Xz X3 
(1) in Q, t>o, 

g a given function, with boundary conditions in the form of inequalities l 

(2) 
u(X,t»o => au(x,t)/an=O, XEr, 

u(x,t)=o => au(x,t)/an?:O, XEr, 

to which is added the initial condition 

(3) u(x,O)=uo(x). 

We note that conditions (2) are non linear; they imply that, at each fixed 
instant t, there exist on r two regions r~ and n where u(x, t) =0 and au (x, t)/an = 0, 
respectively. These regions are not prescribed; thus we deal with a "free boundary" 
problem. 

We can restate (1), (2) in the (equivalent) form of inequalities. For that 
purpose, we introduce the set K of "test functions" v: 

(4) K = {vi v=function defined in Q 2, v?:o on r}; 

then (1), (2) are equivalent to 

u(.,t)EK Vt?:O, 

(5) L [~~ (v-u)+ gradxu.gradAV-U)-g(V-U)] dx?:O VVEK. 

1 a/an denotes the derivative in the direction of the normal to r directed towards the exterior of Q. 

2 We must take v in the Sobolev space Hl(Q); this will beformulated more precisely in Chapter 1. 
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The problem to find a solution u of (5) with the initial condition (3) is what we call 
an inequality of evolution (of parabolic type). 

2. The preceding example has features of a general character: we will encounter 
problems that can be expressed in terms of inequalities in situations where the 
constraints, the equations of state, the physical laws change when certain thresholds 
are crossed or attained. 

The aim of the present work is to discuss examples of such situations in 
Mechanics and Physics. 

3. The "program" indicated in the above paragraph covers an immense field 
that we have not studied exhaustively; we limited ourselves in this volume to the 
simplest classic laws. We have treated the following subjects: 

1) problems of semi-permeable walls, of diffusion, applications to thermo
dynamics and hydrodynamics; 

2) problems of control, particularly in theromodynamics; 
3) problems in (linearized) elasticity involving friction and unilateral con

ditions; 
4) problems of bending of plane plates; 
5) phenomena of elastic-visco-plasticity, perfect elasticity, plasticity, rigid-

visco-plasticity, rigid-perfect plasticity, and locking materials; 
6) flows of Bingham fluids; 
7) problems of inequalities connected with the system of Maxwell operators. 
4. In order to avoid ambiguity in the formulation of the problems enumerated 

above, it was necessary to give a ~oncise but precise review of the mechanical or 
physical bases for the situations envisioned. This is done at the beginning of each 
chapter. We now give a short description of the contents of the chapters. 

5. In Section 1. above, we gave an example of the problems treated in Chapter 1; 
other problems concern temperature control. 

In Chapter 2, control problems are discussed that lead to inequalities of the 
type (compare with (5)) 

oujot(.,t)EK, 

(6) L [~~ (v - ~~) + gradxu.gradx (v - ~~) - g (v - ~~) ] dx?;O 

VVEK, 

with the initial condition (3). 
Chapter 3 treats the classic linear theory of elasticity rather completely (in 

particular, we give a proof of Korn's inequality, the indispensable mathematical 
basis for the theory); then we go on to problems offriction that lead to inequalities; 
we adopt Coulomb's law and indicate some modifications. 

Chapter 4 deals with problems of friction connected with the mechanics of 
thin plates . 

. Chapter 5 is devoted to phenomena of elasto-visco plasticity from which we 
derive, by various passages to the limit, the elastic-perfectly plastic case, the 
rigid-visco-plastic case and the rigid-perfectly plastic case, all of these problems 
being stated in the form of inequalities. In this chapter, we also investigate Hencky's 
law and locking materials. 
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Chapter 6 treats the flow of a certain type of non-newtonian fluid: Bingham 
fluids. Here, we are led to inqualities of evolution containing, as a special case, 
the classic system of Navier-Stokes equations. 

Chapter 7 is concerned with the problems of inequalities connected with 
the system of Maxwell operators. We will first study conducting media where 
the relation between the electric field and the current density is expressed by the 
classic Ohm's law, i. e., media with constant resistivity (we call such a medium 
"stable"). Subsequently, we treat the case of media susceptible to ionization under 
the influence of the electric field. The resistivity then abruptly becomes infinite: 
these are the phenomena that occur in connection with breakdown of condensors 
or antennas. 

"Hybrid" problems simultaneously involving two of the situations described 
in the outline for the preceding chapters are treated in separate articles by the 
authors (see: Duvaut-Lions [7], [8]). 

6. Throughout this book, we made use of the most direct methods possible, 
generally representing inequalities (the absolutely indispensable tool, especially 
for problems of evolution) as limiting cases of non linear equations (which, more
over, usually have a mechanical or physical interpretation). 

In addition, in order to facilitate the reading of the book, we presented each 
chapter as independent as possible (at the price of some repetition). 

7. There are numerous earlier works on stationary inequalities in Mechanics. 
The classic approach (see P. Germain [1], G. Mandel [1], E. Tonti [1] and the 
bibliographies of these works) consists in studying stationary elasticity in relation 
to minimization of quadratic functionals on vector spaces. The minimization of 
analogous functionals on convex sets that are not vector spaces made its appearance 
in perfect plasticity (where the stress tensor remains in a closed bounded convex set) 
(cr. W.I. Koiter [1], G. Mandel [2], W. Prager [1] and the bibliographies of 
these works), subsequently in unilateral elasticity in the problem of Signorini, 
solved in G. Fichera [1], then in J. L. Lions-G. Stampacchia [1 J. 

Similarly, the phenomena of cavitation studied by J. Moreau [3] and the 
investigation of minimal surfaces with constraints (J. C. Nitsche [1]) also lead to 
problems in variational inequalities. 

The inequalities of evolution were introduced in Lions-Stampacchia for the 
parabolic case, in Lions [4] for the hyperbolic case and have been investigated 
particularly by H. Bn5zis [2r (cr. also the book Lions [1] and the bibliography 
of this work). It seems that the applications of the inequalities of evolution to 
Mechanics and Physics are being investigated here for the first time. As might be 
expected, these applications lead to many new problems, some of them still open; 
we mention specifically: 

• the problem of regularity of solutions (the methods of Brezis-Stampacchia 
[1], Brezis [2] are not applicable to numerous situations in this book); 

• the problem of inequalities of evolution in connection with convex sets 
or with functions depending on t (they occur particularly in the theory of 
dynamic elastic-visco plasticity. 

3 where one will find, in particular, the use of the theory of non linear semigroups, a theory that has 
not been used in this book. 
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8. There are other situations in physics leading to inequalities, either stationary 
or of evolution. We will return to this subject, e.g. in the discussion of thermo
elastic-visco plasticity and of optimal control of systems governed by inequalities. 
We also would like to point out that a free boundary problem, occurring in 
hydrodynamics, was solved with inequality methods by C. Baiocchi [1]. 

We did not treat two subjects related to this book: 
i) singular perturbations related to inequalities (theory of singular layers); 

we refer to J. L. Lions [5], [6]; 
ii) methods of numerical approximation of solutions of inequalities of evolution, 

methods that will be treated in the book by R. Glowinski, J. L. Lions and R. 
Tn!molieres [1]. We refer to the works on this subject by D. Begis [1], J.F. Bourgat 
[1], H. Brezis et M. Sibony [1], J. C6a et R. Glowinski [1], J. C6a, R. Glowinski 
et J. Nedelec [1], R. Commincioli [1], [2], [3], B. Courjaret [1], M. Fremond [1], 
A. Fusciardi, U. Mosco, F. Scarpini et A. Schiaffino [1], M. Goursat [1], Y. Hau
gazeau [1], P.G. Hodge [1], A. Marrocco [1], M. Sibony [1], D. Viaud [1]. 

9. The authors wish to express their sincere gratitude to M. Alais with whom 
they had fruitful discussions, to M. A. Lichnerowicz who graciously accepted the 
French edition in the series which he edits, and to C. W. John for her excellent 
work done in translating this book. 

G. Duvaut, J. L. Lions 


