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Introduction 

This book was planned originally not as a work to be published, but as an excuse 
to buy a computer, incidentally to give me a chance to organize my own ideas ~n 
what measure theory every would-be analyst should learn, and to detail my 
approach to the subject. When it turned out that Springer-Verlag thought that the 
point of view in the book had general interest and offered to publish it, I was 
forced to try to write more clearly and search for errors. The search was 
productive. 

Readers will observe the stress on the following points. 

The application of pseudometric spaces. Pseudo metric, rather than metric 
spaces, are applied to obviate the artificial replacement of functions by 
equivalence classes, a replacement that makes the use of "almost everywhere" 
either improper or artificial. The words "function" and "the set on which a 
function has values at least E" can be taken literally in this book. Pseudometric 
space properties are applied in many contexts. For example, outer measures are 
used to pseudometrize classes of sets and the extension of a finite measure from 
an algebra to a 0" algebra is thereby reduced to finding the closure of a subset of 
a pseudo metric space. 

Probability concepts are introduced in their appropriate place, not con
signed to a ghetto. Mathematical probability is an important part of measure 
theory, and every student of measure theory should be acquainted with the 
fundamental concepts and function relations specific to this part. Moreover, 
probability offers a wide range of measure theoretic examples and applications 
both in and outside pure mathematics. At an elementary level, probability-in
spired examples free students from the delusions that product measures are the 
only important multidimensional measures and that continuous distributions are 
the only important distributions. At a more sophisticated level, it is absurd that 
analysts should be familiar with mutual orthogonality but not with mutual in
dependence of functions, that they should be familiar with theorems on con-
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vergence of senes of orthogonal functions but not on convergence of 
martingales. 

Convergence of sequences of measures is treated both in the general Vitali
Hahn-Saks setting and in the mathematical setting of Borel measures on the 
metric spaces of classical analysis: the compact metric spaces and the locally 
compact separable metric spaces. The general discussion is applied in detail to 
finite Lebesgue-Stieltjes measures on the line, in particular to probability 
measures. 
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