Graduate Texts in Mathematics 143

Editorial Board S. Axler F.W. Gehring P.R. Halmos

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed.
- 5 MAC LANE. Categories for the Working Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C^* -Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.

continued after index

J.L. Doob

Measure Theory

J.L. Doob 101 West Windsor Road Urbana, IL 61801 USA

Editorial Board S. Axler Department of Mathematics Michigan State University East Lansing, MI 48824 USA

F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

Mathematics Subject Classification (1991): 28-01, 60A10, 60Bxx, 60Gxx

Library of Congress Cataloging-in-Publication Data Doob, J. L. Measure theory / J. L. Doob p. cm. — (Graduate texts in mathematics ; 143) Includes bibliographical references and index. ISBN 978-1-4612-6931-1 ISBN 978-1-4612-0877-8 (eBook) DOI 10.1007/978-1-4612-0877-8 1. Measure theory. 2. Probabilities. I. Title. II. Series. QA325.D66 1993 515'.42—dc20 93-17497

Printed on acid-free paper.

© 1994 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1994 Softcover reprint of the hardcover 1st edition 1994

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval. electronic adaptation. computer software or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names. trade names. trademarks. etc .. in this publication. even if the former are not especially identified. is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Henry Krell: manufacturing supervised by Jacqui Ashri. Camera-ready copy prepared from author's Microsoft Word files.

9876543

ISBN 978-1-4612-6931-1

SPIN 10636463

Introduction

This book was planned originally not as a work to be published, but as an excuse to buy a computer, incidentally to give me a chance to organize my own ideas on what measure theory every would-be analyst should learn, and to detail my approach to the subject. When it turned out that Springer-Verlag thought that the point of view in the book had general interest and offered to publish it, I was forced to try to write more clearly and search for errors. The search was productive.

Readers will observe the stress on the following points.

The application of pseudometric spaces. Pseudometric, rather than metric spaces, are applied to obviate the artificial replacement of functions by equivalence classes, a replacement that makes the use of "almost everywhere" either improper or artificial. The words "function" and "the set on which a function has values at least ε " can be taken literally in this book. Pseudometric space properties are applied in many contexts. For example, outer measures are used to pseudometrize classes of sets and the extension of a finite measure from an algebra to a σ algebra is thereby reduced to finding the closure of a subset of a pseudometric space.

Probability concepts are introduced in their appropriate place, not consigned to a ghetto. Mathematical probability is an important part of measure theory, and every student of measure theory should be acquainted with the fundamental concepts and function relations specific to this part. Moreover, probability offers a wide range of measure theoretic examples and applications both in and outside pure mathematics. At an elementary level, probability-inspired examples free students from the delusions that product measures are the only important multidimensional measures and that continuous distributions are the only important distributions. At a more sophisticated level, it is absurd that analysts should be familiar with mutual orthogonality but not with mutual independence of functions, that they should be familiar with theorems on convergence of series of orthogonal functions but not on convergence of martingales.

Convergence of sequences of measures is treated both in the general Vitali-Hahn-Saks setting and in the mathematical setting of Borel measures on the metric spaces of classical analysis: the compact metric spaces and the locally compact separable metric spaces. The general discussion is applied in detail to finite Lebesgue-Stieltjes measures on the line, in particular to probability measures.

Contents

Introduction

0.0	Conventions and Notation	1
1.	Notation: Euclidean space	1
2.	Operations involving $\pm \infty$	1
3.	Inequalities and inclusions	1
4.	A space and its subsets	1
5.	Notation: generation of classes of sets	2
6.	Product sets	2
7.	Dot notation for an index set	2
8.	Notation: sets defined by conditions on functions	2
9.	Notation: open and closed sets	3
10.	Limit of a function at a point	3
11.	Metric spaces	3
12.	Standard metric space theorems	3
13.	Pseudometric spaces	5
I. (Operations on Sets	7
1.	Unions and intersections	7
2.	The symmetric difference operator Δ	7
3.	Limit operations on set sequences	8
4.	Probabilistic interpretation of sets and operations on them	10
П	Classes of Subsets of a Space	11
1	Set algebras	11
2	Examples	11
3	The generation of set algebras	12
4.	The Borel sets of a metric space	13
5.	Products of set algebras	13
6.	Monotone classes of sets	15
		10

v

viii Measure Theory

III.	Set Functions	17
1.	Set function definitions	17
2.	Extension of a finitely additive set function	19
3.	Products of set functions	20
4.	Heuristics on σ algebras and integration	21
5.	Measures and integrals on a countable space	21
6.	Independence and conditional probability (preliminary discussion)	22
7.	Dependence examples	24
8.	Inferior and superior limits of sequences of measurable sets	26
9.	Mathematical counterparts of coin tossing	27
10.	Setwise convergence of measure sequences	30
11.	Outer measure	32
12.	Outer measures of countable subsets of R	33
13.	Distance on a set algebra defined by a subadditive set function	33
14.	The pseudometric space defined by an outer measure	34
15.	Nonadditive set functions	36
IV.	Measure Spaces	37
1.	Completion of a measure space (S, \mathbb{S}, λ)	37
2.	Generalization of length on R	38
3.	A general extension problem	38
4.	Extension of a measure defined on a set algebra	40
5.	Application to Borel measures	41
6.	Strengthening of Theorem 5 when the metric space S is complete	
	and separable	41
7.	Continuity properties of monotone functions	42
8.	The correspondence between monotone increasing functions on \mathbf{R}	
	and measures on B(R)	43
9.	Discrete and continuous distributions on R	47
10.	Lebesgue-Stieltjes measures on \mathbf{R}^{N} and their corresponding	
	monotone functions	47
11.	Product measures	48
12.	Examples of measures on \mathbf{R}^{n}	49
13.	Marginal measures	50
14.	Con lossing	50
15.	Measure hulle	51
10.	Measure nuns	52
V. I	Measurable Functions	53
1.	Function measurability	53
2.	Function measurability properties	56
3.	Measurability and sequential convergence	58
4.	Baire functions	58
5.	Joint distributions	60
6.	Measures on function (coordinate) space	60

7.	Applications of coordinate space measures	61
8.	Mutually independent random variables on a probability space	63
9.	Application of independence: the 0-1 law	64
10.	Applications of the 0-1 law	64
11.	A pseudometric for real valued measurable functions on a measure	
	space	65
12.	Convergence in measure	67
13.	Convergence in measure vs. almost everywhere convergence	68
14.	Almost everywhere convergence vs. uniform convergence	69
15.	Function measurability vs. continuity	69
16.	Measurable functions as approximated by continuous functions	70
17.	Essential supremum and infimum of a measurable function	71
18.	Essential supremum and infimum of a collection of	
	measurable functions	71
* **	v	
VI.	Integration	73
1.	The integral of a positive step function on a measure space (S, \mathbb{S}, λ)	73
2.	The integral of a positive function	74
3.	Integration to the limit for monotone increasing sequences	
	of positive functions	75
4.	Final definition of the integral	76
5.	An elementary application of integration	79
6.	Set functions defined by integrals	80
7.	Uniform integrability test functions	81
8.	Integration to the limit for positive integrands	82
9.	The dominated convergence theorem	83
10.	Integration over product measures	84
11.	Jensen's inequality	87
12.	Conjugate spaces and Hölder's inequality	88
13.	Minkowski's inequality	89
14.	The L^p spaces as normed linear spaces	90
15.	Approximation of L^p functions	91
16.	Uniform integrability	94
17.	Uniform integrability in terms of uniform integrability test functions	95
18.	L ¹ convergence and uniform integrability	95
19.	The coordinate space context	96
20.	The Riemann integral	98
21.	Measure theory vs. premeasure theory analysis	101
VII	. Hilbert Space	103
1.	Analysis of L^2	103
2.	Hilbert space	104
3.	The distance from a subspace	106
4.	Projections	107
5.	Bounded linear functionals on \mathfrak{H}	108

x Measure	Theory
-----------	--------

6.	Fourier series	109
7.	Fourier series properties	110
8.	Orthogonalization (Erhardt Schmidt procedure)	111
9.	Fourier trigonometric series	112
10.	Two trigonometric integrals	113
11.	Heuristic approach to the Fourier transform via Fourier series	113
12.	The Fourier-Plancherel theorem	115
13.	Ergodic theorems	117
VII	II. Convergence of Measure Sequences	123
1.	Definition of convergence of a measure sequence	123
2.	Linear functionals on subsets of $\mathbb{C}(S)$	126
3.	Generation of positive linear functionals by measures	
	(S compact metric).	128
4.	$\mathbb{C}(S)$ convergence of sequences in $\mathbb{M}(S)$ (S compact metric)	131
5.	Metrization of $\mathbb{M}(S)$ to match $\mathbb{C}(S)$ convergence; compactness	
	of $\mathbb{M}_{\mathcal{C}}(S)$ (S compact metric)	132
6.	Properties of the function $\mu \rightarrow \mu[f]$, from $\mathbb{M}(S)$, in the $d_{\mathbb{M}}$ metric	
	into R (S compact metric)	133
7.	Generation of positive linear functionals on $\mathbb{C}_0(S)$ by measures	
	(S a locally compact but not compact separable metric space)	135
8.	$\mathbb{C}_0(S)$ and $\mathbb{C}_{00}(S)$ convergence of sequences in $\mathbb{M}(S)$ (S a locally	
	compact but not compact separable metric space)	136
9.	Metrization of $\mathbb{M}(S)$ to match $\mathbb{C}_0(S)$ convergence; compactness	
	of $\mathbb{M}_{\mathcal{C}}(S)$ (S a locally compact but not compact separable metric	
	space, c a strictly positive number)	137
10.	Properties of the function $\mu \rightarrow \mu[f]$, from $\mathbb{M}(S)$ in the $d_{0\mathbf{M}}$ metric	
	into \mathbf{R} (S a locally compact but not compact separable metric space)	138
11.	Stable $\mathbb{C}_0(S)$ convergence of sequences in $\mathbb{M}(S)$ (S a locally	
	compact but not compact separable metric space)	139
12.	Metrization of $\mathbb{M}(S)$ to match stable $\mathbb{C}_0(S)$ convergence (S a locally	
	compact but not compact separable metric space)	139
13.	Properties of the function $\mu \rightarrow \mu[f]$, from $\mathbb{M}(S)$ in the $d_{\mathbf{M}}$ metric into	
	R (S a locally compact but not compact separable metric space)	141
14.	Application to analytic and harmonic functions	142
IX.	Signed Measures	145
1.	Range of values of a signed measure	145
2.	Positive and negative components of a signed measure	145
3.	Lattice property of the class of signed measures	146
4.	Absolute continuity and singularity of a signed measure	147
5.	Decomposition of a signed measure relative to a measure	148
6.	A basic preparatory result on singularity	150
7.	Integral representation of an absolutely continuous measure	150
8.	Bounded linear functionals on L ¹	151

	Contents	xi
0		150
9. 10	Sequences of signed measures Vitali Hahn Sake theorem (continued)	152
10.	Theorem 10 for signed measures	155
11.	Theorem to for signed measures	155
X.	Measures and Functions of Bounded Variation	
	on R	157
1.	Introduction	157
2.	Covering lemma	157
3.	Vitali covering of a set	158
4.	Derivation of Lebesgue-Stieltjes measures and of monotone	1.50
-	functions	158
). 6	Functions of bounded variation	163
0. 7	Absolute continuity and singularity of a function of bounded variation	164
8	The convergence set of a sequence of monotone functions	165
9.	Helly's compactness theorem for sequences of monotone functions	165
10.	Intervals of uniform convergence of a convergent sequence of	
	monotone functions	166
11.	$\mathbb{C}(I)$ convergence of measure sequences on a compact interval I	166
12.	$\mathbb{C}_0(\mathbf{R})$ convergence of a measure sequence	167
13.	Stable $\mathbb{C}_0(\mathbf{R})$ convergence of a measure sequence	169
14.	The characteristic function of a measure	169
15.	Stable $\mathbb{C}_0(\mathbf{R})$ convergence of a sequence of probability distributions	171
16.	Application to a stable $\mathbb{C}_0(\mathbf{R})$ metrization of $\mathbb{M}(\mathbf{R})$	172
1/.	General approach to derivation	174
18.	A ratio limit lemma Application to the boundary limits of harmonic functions	174
19.	Application to the boundary mints of narmonic functions	170
XI	. Conditional Expectations; Martingale Theory	179
1.	Stochastic processes	179
2.	Conditional probability and expectation	179
3	Conditional expectation properties	183
4.	Filtrations and adapted families of functions	187
5.	Martingale theory definitions	188
6.	Martingale examples	189
7.	Elementary properties of (sub- super-) martingales	190
ð. 0	Optional time properties	191
9. 10	The optional sampling theorem	192
11.	The maximal submartingale inequality	194
12.	Upcrossings and convergence	194
13.	The submartingale upcrossing inequality	195
14.	Forward (sub- super-) martingale convergence	195
15.	Backward martingale convergence	197
16.	Backward supermartingale convergence	198

xii Measure Theory

17.	Application of martingale theory to derivation	199
18.	Application of martingale theory to the 0-1 law	201
19.	Application of martingale theory to the strong law of large numbers	201
20.	Application of martingale theory to the convergence of infinite series	202
21.	Application of martingale theory to the boundary limits of	
	harmonic functions	203
No	tation	205

Index	
-------	--

207