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PREFACE

This book aims to present, in a unified way, some basic aspects of the mathematical
theory of well-posedness in scalar optimization.

The first fundamental concept in this area. is inspired by the classical idea of J.
Hadamard, which goes back to the beginning of this century. It requires existence and
uniqueness of the optimal solution together with continuous dependence on the problem's
data.

In the early sixties A. Tykhonov introduced another concept of well-posedness impos-
ing convergence of every minimizing sequence to the unique minimum point. Its relevance
to (and motivation from) the approximate (numerical) solution of optimization problems
is clear.

In the book we study both the Tykhonov and the Hadamard concepts of well-posedness,
the links between them and also some extensions (e.g. relaxing the uniqueness).

Both the pure and the applied sides of our topic are presented. The first four chapters
are devoted to abstract optimization problems. Applications to optimal control, cs'culus
of variations and mathematical programming are the subject matter of the remaining five
chapters.

Chapter I contains the basic facts about Tykhonov well-posedness and its generaliza-
tions. The main metric, topological and differential characterizations are discussed. The
Tykhonov regularization method is outlined.

Chapter II is the key chapter (as we see from its introduction) because it is devoted
to a basic issue: the relationships between Tykhonov and Hadamard well-posedness. We
emphasize the fundamental links between the two concepts in the framework of best
approximation problems, convex functions and variational inequalities.

Chapter III approaches the generic nature of well-posedness (or sometimes ill-posedness)
within various topological settings. Parametric optimization problems which are well-
posed for a dense, or generic, set of parameters are considered. The relationship with
differentiability (sensitivity analysis) is pointed out.

Chapter IV establishes the links between Hadamard well-posedness and variational
or epi-convergences. In this way several characterizations of Hadamard well-posedness in
optimization are obtained. For convex problems the well-posedness is characterized via
the Euler-Lagrange equation. An application to nonsmooth problems is presented, and
the role of the convergence in the sense of Mosco is exploited, especially for quadratic
problems.

Chapter V is the first one devoted to applications of the theory developed in the
first four chapters. Characterizations of well-posedness in optimal control problems for
ordinary (or partial) differential equations are discussed. We deal with various forms of
well-posedness, including Lipschitz properties of the optimal state and control.



VIII

Chapter VI discusses the equivalence between the relaxability of optimal control prob
lems and the continuity of the optimal value (with an abstract generalization). The link
with the convergence of discretetime approximations is presented.

Chapter VII focuses on the study of singular perturbation phenomena in optimal
control from the point of view of Hadamard wellposedness. Continuity properties of
various mappings appearing in singularly perturbed problems (e.g. the reachable set
depending on a small parameter in the derivative) are studied.

Chapter VIII is devoted to characterizations of Tykhonov and Hadamard wellposedness
for Lagrange problems with constraints in the calculus of variations, after treating integral
functionals without derivatives. We also discuss the classical Ritz method, least squares,
and the Lavrentiev phenomenon.

Chapter IX considers first the basic (Bergetype) wellposedness results in a topologi
cal setting, for abstract mathematical programming problems depending on a parameter.
Then we characterize the stability of the feasible set defined by inequalities, via con
straint qualification conditions; Lipschitz properties of solutions to generalized equations
are also discussed. Hadamard wel1posedness in convex mathematical programming is
studied. Quantitative estimates for the optimal solutions are obtained using local Haus
dorff distances. Results about Lipschitz continuity of solutions in nonlinear and linear
programming end the chapter.

We have made an attempt to unify, simplify and relate many scattered results in the
literature. Some new results and new proofs are included. We do not intend to deal with
the theory in the most general setting; our goal is to present the main problems, ideas
and results in as natural a way as possible.

Each chapter begins with an introduction devoted to examples and motivations or to
a simple model problem in order to illustrate the specific topic. The formal statements
are often introduced by heuristics, particular cases and examples, while the complete
proofs are usually collected at the end ofeach section and given in full detail, even when
elementary. Each chapter contains notes and bibliographical remarks.

The prerequisites for reading this book do not extend in general beyond standard real
and functional analysis, general topology and basic optimization theory. Some topics
occasionally require more special knowledge that is always either referenced or explicitly
recalled when needed.

Some sections of this book are based in part on former lecture notes (by T. Zolezzi)
under the title "Perturbations and approximations of minimum problems" .

We benefited from the help of many colleagues. We would like to thank especially
G. Dal Maso, 1. Ekeland, P. Kenderov, D. Klatte, R. Lucchetti, F. Patrone, J. Revalski,
K. Tammer, V. Veliov. The support of the Bulgarian Academy of Sciences, Consiglio
Naaionale delle Ricerche, MPI and MURST is gratefully acknowledged.

We wish to thank A. Patev for drawing the figures, and C. Taverna for typing the
manuscript.

June 1992 Asen L. Dontchev
Tullio Zolezzi
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