

Cambridge University Press

978-0-521-86562-3 - Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences

C. Patrick Doncaster and Andrew J. H. Davey

Frontmatter

[More information](#)

Analysis of Variance and Covariance

How to Choose and Construct Models
for the Life Sciences

C. PATRICK DONCASTER and ANDREW J. H. DAVEY

Cambridge University Press

978-0-521-86562-3 - Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences

C. Patrick Doncaster and Andrew J. H. Davey

Frontmatter

[More information](#)

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521684477

© C. P. Doncaster and A. J. H. Davey 2007

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-86562-3 hardback

ISBN 978-0-521-68447-7 paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Cambridge University Press

978-0-521-86562-3 - Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences

C. Patrick Doncaster and Andrew J. H. Davey

Frontmatter

[More information](#)

Contents

<i>Preface</i>	<i>page ix</i>
Introduction to analysis of variance	
What is analysis of variance?	1
How to read and write statistical models	2
General principles of ANOVA	7
Assumptions of ANOVA	14
How to distinguish between fixed and random factors	16
Nested and crossed factors, and the concept of replication	21
Uses of blocking, split plots and repeated measures	25
Uses of covariates	29
How <i>F</i> -ratios are constructed	35
Use of <i>post hoc</i> pooling	38
Use of quasi <i>F</i> -ratios	40
Introduction to model structures	
Notation	43
Allocation tables	43
Examples	46
Worked example 1: Nested analysis of variance	47
Worked example 2: Cross-factored analysis of variance	49
Worked example 3: Split-plot, pooling and covariate analysis	51
Key to types of statistical models	57
How to describe a given design with a statistical model	58

1	One-factor designs	61
1.1	One-factor model	62
2	Nested designs	67
2.1	Two-factor nested model	68
2.2	Three-factor nested model	72
3	Fully replicated factorial designs	76
3.1	Two-factor fully cross-factored model	78
3.2	Three-factor fully cross-factored model	86
3.3	Cross-factored with nesting model	98
3.4	Nested cross-factored model	109
4	Randomised-block designs	115
4.1	One-factor randomised-block model	121
4.2	Two-factor randomised-block model	128
4.3	Three-factor randomised-block model	134
5	Split-plot designs	141
5.1	Two-factor split-plot model (i)	146
5.2	Three-factor split-plot model (i)	150
5.3	Three-factor split-plot model (ii)	154
5.4	Split-split-plot model (i)	158
5.5	Split-split-plot model (ii)	163
5.6	Two-factor split-plot model (ii)	167
5.7	Three-factor split-plot model (iii)	170
5.8	Split-plot model with nesting	173
5.9	Three-factor split-plot model (iv)	176
6	Repeated-measures designs	179
6.1	One-factor repeated-measures model	187
6.2	Two-factor repeated-measures model	190
6.3	Two-factor model with repeated measures on one cross factor	195
6.4	Three-factor model with repeated measures on nested cross factors	200
6.5	Three-factor model with repeated measures on two cross factors	205
6.6	Nested model with repeated measures on a cross factor	214
6.7	Three-factor model with repeated measures on one factor	220

Cambridge University Press

978-0-521-86562-3 - Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences

C. Patrick Doncaster and Andrew J. H. Davey

Frontmatter

[More information](#)*Contents*

vii

7	Unreplicated designs	229
7.1	Two-factor cross factored unreplicated model	230
7.2	Three-factor cross factored unreplicated model	232
	Further Topics	237
	Balanced and unbalanced designs	237
	Restricted and unrestricted mixed models	242
	Magnitude of effect	244
	A priori planned contrasts and <i>post hoc</i> unplanned comparisons	245
	Choosing experimental designs	248
	Statistical power	248
	Evaluating alternative designs	250
	How to request models in a statistics package	258
	Best practice in presentation of the design	260
	Troubleshooting problems during analysis	264
	<i>Glossary</i>	271
	<i>References</i>	281
	<i>Index of all ANOVA models with up to three factors</i>	284
	<i>Index</i>	286
	<i>Categories of model</i>	288