From Logic to Logic Programming

Kees Doets

The MIT Press Cambridge, Massachusetts London, England © 1994 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

This book was set in Computer Modern by the author and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Doets, Kees. From logic to logic programming / Kees Doets. p. cm. — (Foundations of computing) Includes bibliographical references and index. ISBN 0-262-04142-1 1. Logic programming. I. Title. II. Series. QA76.63.D64 1994 005.1—-dc20

٠

93-6196 CIP

Contents

	Series Foreword	ix
	Preface	xi
1	Preliminaries	1
1.1	Mathematical Induction	1
1.2	Trees	- 3
1.3	Multisets	5
1.4	Ordinals and Cardinals	9
1.5	Notes	11
2	Propositional Logic	13
2.1	Syntax	13
2.2	Semantics	15
2.3	Conjunctive Normal Form	17
2.4	Resolution	20
2.5	Notes	27
3	First-order Logic	29
3.1	Introduction	29
3.2	Syntax	29
3.3	Semantics	31
3.4	Quantifier-free Sentences	36
3.5	Universal Sentences	41
3.6	Prenex and Skolem Forms	46
	3.6.1 Prenex Form	49
	3.6.2 Skolem Form	49
	3.6.3 Compactness	52
3.7	Resolution: The Unrestricted Version	54
3.8	Unification	57
3.9	Resolution	65
3.10	Notes	68

Contents

4	Program-definability	71
4.1	Programs	71
4.2	The Least Herbrand Model	73
4.3	Fixed Points	76
4.4	Hierarchies	80
4.5	Definability	85
4.6	Representing Domains as Herbrand Universes	87
	4.6.1 Natural Numbers	87
	4.6.2 Binary Notation	88
	4.6.3 Lists	90
4.7	Notes	91
5	Linear Resolution	93
5.1	Preliminaries	93
5.2	Unrestricted Linear Resolution	95
5.3	Ground Completeness	99
5.4	Linear Resolution	102
	5.4.1 Motivation	102
	5.4.2 Resolvents	102
	5.4.3 Derivations	107
5.5	SLD-Resolution	114
5.6	Notes	119
6	Infinite Derivations	121
6.1	Negative Information	121
6.2	Non-standard Algebras	122
6.3	Resolution over Non-standard Algebras	126
6.4	Realization Trees	130
6.5	The Interplay of SLD-trees and Realization Trees	134
6.6	Notes	139

Contents

7	Computability	141
7.1	Preliminaries	141
7.2	Computability of Recursive Functions	148
7.3	Complexity of $T_P \downarrow$	155
	7.3.1 Analytical Hierarchy	155
	7.3.2 Kleene Normal Form	158
	7.3.3 Well-founded Part	160
	7.3.4 Co-defining Π_1^1 -Relations	162
7.4	Notes	163
8	Negation	165
8.1	Introduction	165
8.2	Negation Implemented: SLDNF	167
8.3	3-Valued Models	174
8.4	3-Valued Consequence Operator	176
8.5	Soundness	178
8.6	Saturation	180
8.7	Completeness for SLDNF	185
	8.7.1 Modes	185
	8.7.2 Completeness	190
8.8	Notes	195
	Bibliography	197
	Rules and Programs	201
	Notation	203
	Index	207