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Preface to the Second Printing 
of the Second Edition 

This edition is essentially a reprinting of the Second Edition, with the addi
tion of two items to the Supplementary Bibliography, namely, Dodson and 
Parker: A User's Guide to Algebraic Topology, and Gray: Modern Differential 
Geometry of Curves and Surfaces. 

This latter text is very important since it contains Mathematica programs 
to perform all of the essential differential geometric operations on curves and 
surfaces in 3-dimensional Euclidean space. The programs are available by 
anonymous ftp from bianchLumd.edu/pub/ and are being used as support 
for a course at, among other places, UMIST: http://www.ma.umist.ac.uk/kd 
/ma351/ma351.html . 

June 1997 Kit Dodson 
Manchester, U.K. 

Tim Poston 
Singapore 



Preface to the Second Edition 

We have been very encouraged by the reactions of students and teachers using 
our book over the past ten years and so this is a complete retype in TEX, with 
corrections of known errors and the addition of a supplementary bibliography. 
Thanks are due to the Springer staff in Heidelberg for their enthusiastic sup
port and to the typist, Armin Kollner for the excellence of the final result. 
Once again, it has been achieved with the authors in yet two other countries. 

November 1990 Kit Dodson 
Toronto, Canada 

Tim Poston 
Pohang, Korea 
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Introduction 

The title of this book is misleading. 

Any possible title would mislead somebody. ''Tensor Analysis" suggests 
to a mathematician an ungeometric, manipulative debauch of indices, with 
tensors ill-defined as "quantities that transform according to" unspeakable 
formulae. "Differential Geometry" would leave many a physicist unaware that 
the book is about matters with which he is very much concerned. We hope 
that "Tensor Geometry" will at least lure both groups to look more closely. 

Most modern "differential geometry" texts use a coordinate-free notation 
almost throughout. This is excellent for a coherent understanding, but leaves 
the physics student quite unequipped for the physical literature, or for the 
specific physical computations in which coordinates are unavoidable. Even 
when the relation to classical notation is explained, as in the magnificent 
[Spivak], pseudo-Riemannian geometry is barely touched on. This is crippling 
to the physicist, for whom spacetime is the most important example, and 
perverse even for the geometer. Indefinite metrics arise as easily within pure 
mathematics (for instance in Lie group theory) as in applications, and the 
mathematician should know the differences between such geometries and the 
positive definite type. In this book therefore we treat both cases equally, and 
describe both relativity theory and (in Ch. IX, §6) an important "abstract" 
pseudo Riemannian space, SL(2jR). 

The argument is largely carried in modern, intrinsic notation which lends 
itself to an intensely geometric (even pictorial) presentation, but a running 
translation into indexed notation explains and derives the manipUlation rules 
so beloved of, and necessary to, the physical community. Our basic notations 
are summarised in Ch. 0, along with some basic physics. 

Einstein's system of 1905 deduced everything from the Principle of Rela
tivity: that no experiment whatever can define for an observer his "absolute 
speed". Minkowski published in 1907 a geometric synthesis of this work, re
placing the once separately absolute space and time of physics by an absolute 
four dimensional spacetime. Einstein initially resisted this shift away from 
argument by comparison of observers, but was driven to a more "spacetime 
geometric" view in his effort to account for gravitation, which culminated 
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in 1915 with General Relativity. For a brilliant account of the power of the 
Principle of Relativity used directly, see [Feynman]; particularly the deduc
tion (vol. 2, p.13-16) of magnetic effects from the laws of electrostatics. It 
is harder to maintain this approach when dealing with the General theory. 
The Equivalence Principle (the most physical assumption used) is hard even 
to state precisely without the geometric language of covariant differentiation, 
while Einstein's Equation involves sophisticated geometric objects. Before any 
detailed physics, therefore, we develop the geometrical setting: Chapters I - X 
are a geometry text, whose material is chosen with an eye to physical useful
ness. The motivation is largely geometric also, for accessibility to mathematics 
students, but since physical thinking occasionally offers the most direct insight 
into the geometry, we cover in Ch.O, §3 those elementary facts about special 
relativity that we refer to before Ch. XI. British students of either mathemat
ics or physics should usually know this much before reaching university, but 
variations in educational systems - and students - are immense. 

The book's prerequisites are some mathematical or physical sophistication, 
the elementary functions (log, exp, cos, cosh, etc.), plus the elements of vector 
algebra and differential calculus, taught in any style at all. Chapter I will 
be a recapitulation and compendium of known facts, geometrically expressed, 
for the student who has learnt "Linear Algebra". The student who knows 
the same material as "Matrix Theory" will need to read it more carefully, as 
the style of argument will be less familiar. (S)he will be well advised to do a 
proportion of the exercises, to consolidate understanding on matters like "how 
matrices multiply" which we assume familiar from some point of view. The 
next three chapters develop affine and linear geometry, with material new to 
most students and so more slowly taken. Chapter V sets up the algebra of 
tensors, handling both ends and the middle of the communication gap that 
made 874 U.S. "active research physicists" [Miller] rank "tensor analysis" 
ninth among all Math courses needed for physics Ph.D. students, more than 
80% considering it necessary, while "multilinear algebra" is not among the first 
25, less than 20% in each specialisation reommending it. "Multilinear algebra" 
is just the algebra of the manipulations, differentiation excepted, that make 
up "tensor analysis". 

Chapter VI covers those facts about continuity, compactness and so on 
needed for precise argument later; we resisted the temptation to write a topol
ogy text. Chapter VII treats differential calculus "in several variables" , namely 
between affine spaces. The affine setting makes the "local linear approxima
tion" character of the derivative much more perspicuous than does a use of 
vector spaces only, which permit much more ambiguity as to ''where vectors 
are" . This advantage is increased when we go on to construct manifolds; mod
elling them on affine spaces gives an unusually neat and geometric construction 
of the tangent bundle and its own manifold structure. These once set up, we 
treat the key facts about vector fields, previously met as ''first order differ-
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ential equations" by many readers. To keep the book selfcontained we show 
the existence and smoothness of flows for vector fields (solutions to equations) 
in an Appendix, by a recent, simple and attractively geometric proof due to 
Sotomayor. The mathematical sophistication called for is greater than for the 
body of the book, but so is that which makes a student want a proof of this 
result. 

Chapter VIII begins differential geometry proper with the theory of con
nections, and their several interrelated geometric interpretations. The "rolling 
tangent planes without slipping" picture allows us to "see" the connection 
between tangent spaces along a curve in an ordinary embedded surface, while 
the intrinsic geometry of the tangent bundle formulation gives a tool both 
mathematically simpler in the end, and more appropriate to physics. 

Chapter IX discusses geodesics both locally and variationally, and exam
ines some special features of indefinite metric geometry (such as geodesics 
never "the shortest distance between two points"). Geodesics provide the key 
to analysis of a wealth of illuminating examples. 

In Chapter X the Riemann curvature tensor is introduced as a measure 
of the failure of a manifold-with-connection to have locally the flat geometry 
of an affine space. We explore its geometry, and that of the related objects 
(scalar curvature, Ricci tensor, etc.) important in mathematics and physics. 

Chapter XI is concerned chiefly with a geometric treatment of how matter 
and its motion must be described, once the Newtonian separation of space and 
time dissolves into one absolute spacetime. It concludes with an explanation 
of the geometric incompatibility of gravitation with any simple flat view of 
spacetime, so leading on to general relativity. 

Chapter XII uses all of the geometry (and many of the examples) previ
ously set up, to make the interaction of matter and spacetime something like 
a visual experience. After introducing the equivalence principle and Einstein's 
equation, and discussing their cosmic implications, we derive the Schwarzsehild 
solution and consider planetary motion. By this point we are equipped both 
to compute physical quantities like orbital periods and the famous advance 
of the perihelion of Mercury, and to see that the paths of the planets (which 
to the flat or Riemannian intuition have little in common with straight lines) 
correspond indeed to geodesics. 

Space did not permit the coherent inclusion of differential forms and inte
gration. Their use in geometry involves connection and curvature forms with 
values not in the real numbers but in the Lie algebra of the appropriate Lie 
group. A second volume will treat these topics and develop the clear expo
sition of the tensor geometric tools of solid state physics, which has suffered 
worse than most subjects from index debauchery. 

The only feature in which this book is richer than in pictures (to strengthen 
geometric insight) is exercises (to strengthen detailed comprehension). Many 
of the longer and more intricate proofs have been broken down into carefully 
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programmed exercises. To work through a proof in this way teaches the mind, 
while a displayed page of calculation merely blunts the eye. 

Thus, the exercises are an integral part of the text. The reader need not 
do them all, perhaps not even many, but should read them at least as carefully 
as the main text, and think hard about any that seem difficult. If the "really 
hard" proportion seems to grow, reread the recent parts of the text - doing 
more exercises. 

We are grateful to various sources of support during the writing of this 
book: Poston to the Instituto de Matematica Pura e Aplicada in Rio de 
Janeiro, Montroll's "Institute for Fundamental Studies" in Rochester, N.Y., 
the University of Oporto, and at Battelle Geneva to the Fonds National Su
isse de 180 Recherche Scientifique (Grant no. 2.461-0.75) and to Battelle Insti
tute, Ohio (Grant no. 333-207); Dodson to the University of Lancaster and 
(1976-77) the International Centre for Theoretical Physics for hospitality dur
ing a European Science Exchange Programme Fellowship sabbatical year. We 
learned from conversation with too many people to begin to list. Each author, 
as usual, is convinced that any remaining errors are the responsibility of the 
other, but errors in the diagrams are due to the draughtsman, Poston, alone. 

Finally, admiration, gratitude and sympathy are due Sylvia Brennan for 
the vast job well done of preparing camera ready copy in Lancaster with the 
authors in two other countries. 

Kit Dodson 
ICTP, Trieste 

Tim Poston 
Battelle, Geneva 


