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Preface 

Permutation groups arguably form the oldest part of group theory. Their 
study dates back to the early years of the nineteenth century and, indeed, 
for a long time groups were always understood to be permutation groups. 
Although, of course, this is no longer true, permutation groups continue 
to play an important role in modern group theory through the ubiquity of 
group actions and the concrete representations which permutation groups 
provide for abstract groups. Today, both finite and infinite permutation 
groups are lively topics of research. 

In this book we have tried to present something of the sweep of the 
development of permutation groups, explaining where the problems have 
come from as well as how they have been solved. Where appropriate we deal 
with finite and infinite groups together. Some of the theorems we consider 
arose in the last century or the earlier parts of this century, but most of 
the book deals with work done over the last few decades. In particular, the 
kinds of problem in finite permutation groups which can be usefully tackled 
has completely changed since the classification of finite simple groups was 
announced in 1979 (see Appendix A). One chapter of this book is devoted to 
the proof of the pivotal O'Nan-Scott Theorem which links the classification 
of finite simple groups directly to problems in finite permutation groups. 
We have described some of the applications of the O'Nan-Scott Theorem, 
even though in many cases the proofs are too technical for consideration 
here. 

This book is intended as an introduction to permutation groups. It can 
be used as a text for a graduate or advanced undergraduate level course, 
or for independent study. The reader should have had a general introduc
tion to group theory, and know about such things as the Sylow theorems, 
composition series and automorphism groups, but we have kept the pre
requisites modest and recall specific facts as needed. Material in the first 
three chapters of the book is basic, but later chapters can be read largely 
independently of one another, so the text can be adapted for a variety of 
courses. An instructor should first cover Chapters 1 to 3 and then select 

v 

Preface 

Permutation groups arguably form the oldest part of group theory. Their 
study dates back to the early years of the nineteenth century and, indeed, 
for a long time groups were always understood to be permutation groups. 
Although, of course, this is no longer true, permutation groups continue 
to play an important role in modern group theory through the ubiquity of 
group actions and the concrete representations which permutation groups 
provide for abstract groups. Today, both finite and infinite permutation 
groups are lively topics of research. 

In this book we have tried to present something of the sweep of the 
development of permutation groups, explaining where the problems have 
come from as well as how they have been solved. Where appropriate we deal 
with finite and infinite groups together. Some of the theorems we consider 
arose in the last century or the earlier parts of this century, but most of 
the book deals with work done over the last few decades. In particular, the 
kinds of problem in finite permutation groups which can be usefully tackled 
has completely changed since the classification of finite simple groups was 
announced in 1979 (see Appendix A). One chapter ofthis book is devoted to 
the proof of the pivotal O'Nan-Scott Theorem which links the classification 
of finite simple groups directly to problems in finite permutation groups. 
We have described some of the applications of the O'Nan-Scott Theorem, 
even though in many cases the proofs are too technical for consideration 
here. 

This book is intended as an introduction to permutation groups. It can 
be used as a text for a graduate or advanced undergraduate level course, 
or for independent study. The reader should have had a general introduc
tion to group theory, and know about such things as the Sylow theorems, 
composition series and automorphism groups, but we have kept the pre
requisites modest and recall specific facts as needed. Material in the first 
three chapters of the book is basic, but later chapters can be read largely 
independently of one another, so the text can be adapted for a variety of 
courses. An instructor should first cover Chapters 1 to 3 and then select 

v 



vi Preface 

material from further chapters depending on the interests of the class and 
the time available. 

Our own experiences in learning have led us to take considerable trouble 
to include a large number of examples and exercises; there are over 600 of 
the latter. Exercises range from simple to moderately difficult, and include 
results (often with hints) which are referred to later. As the subject devel
ops, we encourage the reader to accept the invitation of becoming involved 
in the process of discovery by working through these exercises. Keep in 
mind Shakespeare's advice: "Things done without example, in their issue 
are to be fear'd" (King Henry the Eighth, I.ii.90). 

Although it has been a very active field during the past 20 to 30 years, 
no general introduction to permutation groups has appeared since H. 
Wielandt's influential book Finite Permutation Groups was published in 
1964. This is a pity since the area is both interesting and accessible. Our 
book makes no attempt to be encyclopedic and some choices have been a 
little arbitrary, but we have tried to include topics indicative of the cur
rent development of the subject. Each chapter ends with a short section of 
notes and a selection of references to the extensive literature; again there 
has been no attempt to be exhaustive and many important papers have 
had to be omitted. 

We have personally known a great deal of pleasure as our understanding 
of this subject has grown. We hope that some of this pleasure is reflected 
in the book, and will be evident to the reader. A book like this owes a clear 
debt to the many mathematicians who have contributed to the subject; 
especially Camille Jordan (whose Traite de substitutions et des equations 
algebriques was the first text book on the subject) and Helmut Wielandt, 
but also, more personally, to Peter Neumann and Peter Cameron. We thank 
Bill Kantor, Joachim Neubiiser and Laci Pyber who each read parts of an 
early version of the manuscript and gave useful advice. Although we have 
taken considerable care over the manuscript, we expect that inevitably 
some errors will remain; if you find any, we should be grateful to hear from 
you. 

Finally, we thank our families who have continued to support and 
encourage us in this project over a period of more than a decade. 

Acknowledgement. The tables in Appendix B were originally published as 
Tables 2, 3 and 4 of: John D. Dixon and Brian Mortimer, Primitive per
mutation groups of degree less than 1000, Math. Proc. Cambridge Phil. 
Soc. 103 (1988) 213-238. They are reprinted with permission of Cambridge 
University Press. 
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Notation 

N,Z 
Q,lR,<C 
lFq 
Kd 
JiCid(K),JiCid(q) 
~Cid(K), ~Cid(q) 

S(t,k,v) 
Sym(o'), Jilt(o') 
Sn, Jin 

FSym(o') 
en 
CiLd(K), SLd(K), rLd(K) 
JiCiLd(K) , JiSLd(K) , JirLd(K) 
~CiLd(K), ~SLd(K), ~rLd(K) 
SP2m(K), SP2m(2) 
~CiU3(q), ~SU3(q), ~rUd(q) 
SZ(2B) and R(3B) 
M lO,··· ,M24 

W lO ,···, W 24 

fix(x), supp(x) 
O,{k},O,(k) 

Orb(K, ~) 
Graph(~) 
GCD(m,n) 
LxJ 
lSI 
O,\~ 

r8~ 
Fun(r, ~) 
Im( <I», ker( <I» 

natural numbers and integers 
rational, real and complex numbers 
field with q elements 
vector space of dimension dover K 
affine geometry over K and over IF q 

projective geometry over K and 
over lFq 

Steiner system 
symmetric and alternating groups on 0, 

symmetric and alternating groups 
of degree n 

finitary symmetric group 
cyclic group of order n 
linear groups over K 
affine groups over K 
projective groups over K 
symplectic groups over K 
unitary groups over K 
Suzuki and Ree groups 
Mathieu groups 
Witt geometries 
set of fixed points and support of x 
sets of k-subsets and k-tuples from 0, 

set of orbits of K on ~ 
orbital graph 
greatest common divisor of m and n 
largest integer :::; x 
cardinality of set S 
elements of 0, not in ~ 
symmetric difference of r and ~ 
set of functions from r to ~ 
image and kernel of <I> 
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fix(x), supp(x) 
O{k},O(k) 

Orb(K, ~) 
Graph(~) 
GCD(m,n) 
LxJ 
ISI 
O\~ 
r8~ 
Fun(r, ~) 
Im( <I», ker( <I» 

natural numbers and integers 
rational, real and eomplex numbers 
field with q elements 
veetor spaee of dimension d over K 
affine geometry over K and over lF q 

projective geometry over K and 
over lFq 

Steiner system 
symmetrie and alternating groups on 0 
symmetrie and alternating groups 

of degree n 
finitary symmetrie group 
eyclie group of order n 
linear groups over K 
affine groups over K 
projeetive groups over K 
sympleetic groups over K 
unitary groups over K 
Suzuki and Ree groups 
Mathieu groups 
Witt geometries 
set of fixed points and support of x 
sets of k-subsets and k-tuples from 0 
set of orbits of K on ~ 
orbital graph 
greatest eommon divisor of m and n 
largest integer :::; x 
eardinality of set S 
elements of 0 not in ~ 
symmetrie differenee of r and ~ 
set of functions from r to ~ 
image and kernel of <I> 

xi 



xii Notation 

Aut(X) 
Inn(G) 
Out(G) 
soc(G) 
Nc(H) 
ec(H) 
H ::; G, N <J G 
G x H,Gm 
G>4H 
Gwrr H 
G.H,G.n 
G:H 

automorphism group of X 
inner automorphism group of G 
outer automorphism group of G 
sode of G 
normalizer of H in G 
centralizer of H in G 
subgroup, normal subgroup 
direct product, direct power 
semidirect product 
wreath product 
an extension of G by H, by en 
a split extension of G by H 
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Gc(H) 
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G x H,Gm 
G>4H 
Gwrr H 
G.H,G.n 
G:H 

automorphism group of X 
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