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Introduction 

This book is a course in general topology, intended for students in the 
first year of the second cycle (in other words, students in their third univer
sity year). The course was taught during the first semester of the 1979-80 
academic year (three hours a week of lecture, four hours a week of guided 
work). 

Topology is the study of the notions of limit and continuity and thus is, in 
principle, very ancient. However, we shall limit ourselves to the origins of the 
theory since the nineteenth century. One of the sources of topology is the 
effort to clarify the theory of real-valued functions of a real variable: uniform 
continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass 
theorem (this work is historically inseparable from the attempts to define 
with precision what the real numbers are). Cauchy was one of the pioneers in 
this direction, but the errors that slip into his work prove how hard it was to 
isolate the right concepts. Cantor came along a bit later; his researches into 
trigonometric series led him to study in detail sets of points of R (whence the 
concepts of open set and closed set in R, which in his work are intermingled 
with much subtler concepts). 

The foregoing alone does not justify the very general framework in which 
this course is set. The fact is that the concepts mentioned above have shown 
themselves to be useful for objects other than the real numbers. First of all, 
since the nineteenth century, for points of Rn. Next, especially in the twentieth 
century, in a good many other sets: the set of lines in a plane, the set of linear 
transformations in a real vector space, the group of rotations, the Lorentz 
group, etc. Then in 'infinite-dimensional' sets: the set of all continuous 
functions, the set of all vector fields. etc. 

Topology divides into 'general topology' (of which this course exposes 
the rudiments) and 'algebraic topology', which is based on general topology 



x Introduction 

but makes use of a lot of algebra. We cite some theorems whose most natural 
proofs appeal to algebraic topology: 

(1) let B be a closed ball in Rn, f a continuous mapping of B into B; then f 
has a fixed point; 

(2) for every x E S2 (the 2-dimensional sphere) let V(x) be a vector tangent to 
S2 at x; suppose that Vex) depends continuously on x; then there exists an 
Xo E S2 such that V(xo) = 0; 

(3) let U and V be homeomorphic subsets of R"; if U is open in R", then V is 
open in R". 

These theorems cannot be obtained by the methods of this course, but, having 
seen their statements, some readers will perhaps want to learn something 
about algebraic topology. 

The sign. in the margin pertains to theorems that are especially deep or 
especially useful. The choice of these statements entails a large measure of 
arbitrariness: there obviously exist many little remarks, very easy and con
stantly used, that are not graced by the sign •. 

The sign * signals a passage that is at the limits of ' the program' (by which I 
mean what has been more or less traditional to teach at this level for some 
years). 

Quite a few of the statements have already been encountered in the First 
cycle. For clarity and coherence of the text, it seemed preferable to take them 
up again in detail. 

The English edition differs from the French by various minor improve
ments and by the addition of a section on normal spaces (Chapter 7, 
Section 6). 


