Emmanuele DiBenedetto

Real Analysis

Springer Science+Business Media, LLC

Emmanuele DiBenedetto Department of Mathematics Vanderbilt University Nashville, TN 37240 U.S.A.

Library of Congress Cataloging-in-Publication Data

DiBenedetto, Emmanuele.
Real Analysis / Emmanuele DiBenedetto.
p. cm. — (Birkhäuser advanced texts)
Includes bibliographical references and index.
ISBN 978-1-4612-6620-4 ISBN 978-1-4612-0117-5 (eBook)
DOI 10.1007/978-1-4612-0117-5
I. Mathematical analysis. I. Title. II. Series.

QA300.D46 2001 515-dc21

2001052752 CIP

AMS Classification Codes: 03E04, 03E10, 03E20, 03E25, 26A03, 26A09, 26A12, 26A15, 26A16, 26A21, 26A27, 26A30, 26A42, 26A45, 26A46, 26A48, 26A51, 26B05, 26B15, 26B20, 26B25, 26B30, 26B35, 26B40, 26E10, 28A05, 28A10, 28A12, 28A15, 28A20, 28A25, 28A33, 28A35, 28A50, 28A75, 28A78, 31B05, 31B10, 35C15, 35E05, 40A05, 40A10, 41A10, 42B25, 42B35, 46A03, 46A22, 46A30, 46A32, 46B03, 46B07, 46B10, 46B25, 46B45, 46C05, 46C15, 46E35, 46F05, 46F10, 54A05, 54A10, 54A20, 54A25, 54B05, 54B10, 54B15, 54C05, 54C30, 54D10, 54D10, 54D30, 54D45, 54D60, 54D65, 54E35, 54E40, 54E45, 54E50, 54E52

Printed on acid-free paper © 2002 Springer Science+Business Media New York Originally published by Birkhäuser Boston in 2002 Softcover reprint of the hardcover 1st edition 2002

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

ISBN 978-1-4612-6620-4 SPIN 10798100

Reformatted from the author's files by John Spiegelman, Philadelphia, PA.

987654321

Contents

Preface

Acknowledgments

Pr	elim	inaries	1
	1	Countable sets	1
	2	The Cantor set	2
	3	Cardinality	4
		3.1 Some examples	5
	4	Cardinality of some infinite Cartesian products	6
	5	Orderings, the maximal principle, and the axiom of choice	8
	6	Well-ordering	9
		6.1 The first uncountable	11
	Pro	blems and Complements	11
I	Г	Fonologies and Metric Snaces	17
I	ן 1	Fopologies and Metric Spaces	17 17
I		Topological spaces	
Ι		Topological spaces	17
I	1	Topological spaces	17 19
Ι	1 2	Topological spaces	17 19 19
Ι	1 2 3	Topological spaces	17 19 19 21
Ι	1 2 3	Topological spaces 1.1 Hausdorff and normal spaces Urysohn's lemma The Tietze extension theorem Bases, axioms of countability, and product topologies 4.1 Product topologies	17 19 19 21 22
I	1 2 3 4	Topological spaces	17 19 19 21 22 24

vi Contents

	6	Compact subsets of \mathbb{R}^N	• •		•	. 27
	7	Continuous functions on countably compact spaces				29
	8	Products of compact spaces				
	9	Vector spaces				31
		9.1 Convex sets				
		9.2 Linear maps and isomorphisms				
	10	Topological vector spaces				
		10.1 Boundedness and continuity				35
	11	Linear functionals				
	12	Finite-dimensional topological vector spaces				
		12.1 Locally compact spaces				
	13	Metric spaces				
		13.1 Separation and axioms of countability				
		13.2 Equivalent metrics				
		13.3 Pseudometrics				
	14	Metric vector spaces				
	• •	14.1 Maps between metric spaces				
	15	Spaces of continuous functions				
	10	15.1 Spaces of continuously differentiable functions				
	16	On the structure of a complete metric space				
	17	Compact and totally bounded metric spaces		·		46
	1,	17.1 Precompact subsets of X				
	Pro	blems and Complements				
		-				
II	N	Measuring Sets				65
II	N 1	Measuring Sets Partitioning open subsets of \mathbb{R}^N				
II						65
II	1	Partitioning open subsets of \mathbb{R}^N	•	•		65 67
II	1 2	Partitioning open subsets of \mathbb{R}^N	•		· ·	65 67 68
II	1 2	Partitioning open subsets of \mathbb{R}^N	•		· · · ·	65 67 68 71 71
II	1 2	Partitioning open subsets of \mathbb{R}^N	· · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	65 67 68 71 71 71
Π	1 2 3	Partitioning open subsets of \mathbb{R}^N	· · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	65 67 68 71 71 71
II	1 2 3	Partitioning open subsets of \mathbb{R}^N	• • • •	• • • • •	· · · · · · · · · · · · · · · · · · ·	65 67 68 71 71 72 73 73
Π	1 2 3	Partitioning open subsets of \mathbb{R}^N	• • • •	• • • • •	· · · · · · · · · · · · · · · · · · ·	65 67 68 71 71 72 73 73
п	1 2 3 4	Partitioning open subsets of \mathbb{R}^N	· · · ·	· · · · · · · · · ·	· · · · · · · · ·	65 67 68 71 71 72 73 73 73
II	1 2 3 4 5	Partitioning open subsets of \mathbb{R}^N	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · ·	65 67 68 71 71 72 73 73 74 76 79
Π	1 2 3 4 5 6	Partitioning open subsets of \mathbb{R}^N		· · · · · · · · · · ·	· · · · · · · · · · · ·	65 67 68 71 71 72 73 73 73 74 76 79 80
п	1 2 3 4 5 6	Partitioning open subsets of \mathbb{R}^N			· · · · · · · · · · · · · · ·	65 67 68 71 72 73 73 74 76 79 80 80
11	1 3 4 5 6 7	Partitioning open subsets of \mathbb{R}^N			· · · · · · · · · · · · · · ·	65 67 68 71 72 73 73 74 76 79 80 80
п	1 2 3 4 5 6 7 8	Partitioning open subsets of \mathbb{R}^N			· ·	65 67 68 71 72 73 73 74 76 79 80 80 80 82 84
п	1 2 3 4 5 6 7 8	Partitioning open subsets of \mathbb{R}^N			· · · · · · · · · · · · · · · · · · ·	65 67 68 71 71 72 73 73 73 74 76 79 80 80 82 84 84
п	1 2 3 4 5 6 7 8 9	Partitioning open subsets of \mathbb{R}^N			· · · · · ·	65 67 68 71 71 72 73 73 73 74 76 79 80 80 80 82 84 84 84
п	1 2 3 4 5 6 7 8 9 10	Partitioning open subsets of \mathbb{R}^N			· · · · · ·	65 67 68 71 71 72 73 73 73 74 76 79 80 80 82 84 84 84 88
п	1 2 3 4 5 6 7 8 9 10 11	Partitioning open subsets of \mathbb{R}^N				65 67 68 71 71 72 73 73 74 76 79 80 80 80 82 84 84 84 88 88 88

	14	Borel sets, measurable sets, and incomplete measures	91
		14.1 A continuous increasing function $f : [0, 1] \rightarrow [0, 1] \dots$	91
		14.2 On the preimage of a measurable set	93
		14.3 Proof of Propositions 14.1 and 14.2	94
	15	More on Borel measures	94
		15.1 Some extensions to general Borel measures	97
		15.2 Regular Borel measures and Radon measures	97
	16	Regular outer measures and Radon measures	98
		16.1 More on Radon measures	99
	17	Vitali coverings	- 99
	18	The Besicovitch covering theorem	
	19	Proof of Proposition 18.2	105
	20	The Besicovitch measure-theoretical covering theorem	105
		blems and Complements	
	110		110
Ш	[]	The Lebesgue Integral	123
	1	Measurable functions	123
	2	The Egorov theorem	126
		2.1 The Egorov theorem in \mathbb{R}^N	128
		2.2 More on Egorov's theorem	128
	3	Approximating measurable functions by simple functions	128
	4	Convergence in measure	130
	5	Quasi-continuous functions and Lusin's theorem	133
	6	Integral of simple functions	135
	7	The Lebesgue integral of nonnegative functions	136
	8	Fatou's lemma and the monotone convergence theorem	137
	9	Basic properties of the Lebesgue integral	130
	10	Convergence theorems	141
	11	Absolute continuity of the integral	142
	12	Product of measures	142
	13	On the structure of $(\mathcal{A} \times \mathcal{B})$	144
	14	The Fubini–Tonelli theorem	144
		14.1 The Tonelli version of the Fubini theorem	147
	15	Some applications of the Fubini–Tonelli theorem	140
	10	15.1 Integrals in terms of distribution functions	140
		15.2 Convolution integrals	140
		15.3 The Marcinkiewicz integral	149
	16	Signed measures and the Hahn decomposition	150
	17	The Radon–Nikodým theorem	151
	18	Decomposing measures	157
	10	18.1 The Jordan decomposition	157
		18.2 The Lebesgue decomposition	150
		18.3 A general version of the Radon–Nikodým theorem	1.59
	Proł	blems and Complements	
			1111/

viii Contents

IV	7	Copics on Measurable Functions of Real Variables	171
	1	Functions of bounded variations	. 171
	2	Dini derivatives	. 173
	3	Differentiating functions of bounded variation	. 176
	4	Differentiating series of monotone functions	
	5	Absolutely continuous functions	
	6	Density of a measurable set	
	7	Derivatives of integrals	
	8	Differentiating Radon measures	
	9	Existence and measurability of $D_{\mu}\nu$	
		9.1 Proof of Proposition 9.2	
	10	Representing $D_{\mu}\nu$	
		10.1 Representing $D_{\mu}v$ for $v \ll \mu$	
		10.2 Representing $D_{\mu}v$ for $v \perp \mu$	
	11	The Lebesgue differentiation theorem $\dots \dots \dots \dots \dots \dots \dots$	
	••	11.1 Points of density	
		11.2 Lebesgue points of an integrable function	
	12	Regular families	
	13	Convex functions	
	14	Jensen's inequality	
	15	Extending continuous functions	
	16	The Weierstrass approximation theorem	
	17	The Stone–Weierstrass theorem	
	18	Proof of the Stone–Weierstrass theorem	
	10	18.1 Proof of Stone's theorem	
	19	The Ascoli–Arzelà theorem	
	17	19.1 Precompact subsets of $C(\overline{E})$	
	Pro	blems and Complements	
	110		. 205
v	Т	The $L^p(E)$ Spaces	221
	1	Functions in $L^p(E)$ and their norms	. 221
		1.1 The spaces L^p for $0 $	
		1.2 The spaces L^q for $q < 0$	
	2	The Hölder and Minkowski inequalities	
	3	The reverse Hölder and Minkowski inequalities	
	4	More on the spaces L^p and their norms $\ldots \ldots \ldots \ldots$	
		4.1 Characterizing the norm $ f _p$ for $1 \le p < \infty$	
		4.2 The norm $\ \cdot\ _{\infty}$ for <i>E</i> of finite measure	
		4.3 The continuous version of the Minkowski inequality	
	5	$L^p(E)$ for $1 \le p \le \infty$ as normed spaces of equivalence classes .	
		5.1 $L^p(E)$ for $1 \le p \le \infty$ as a metric topological vector space.	
	6	A metric topology for $L^p(E)$ when $0 $	
		6.1 Open convex subsets of $L^p(E)$ when $0 $	
	7	Convergence in $L^p(E)$ and completeness	
	8	Separating $L^{p}(E)$ by simple functions	

	9	Weak convergence in $L^p(E)$. 234
		9.1 A counterexample	. 234
	10	Weak lower semicontinuity of the norm in $L^p(E)$	
	11	Weak convergence and norm convergence	. 236
		11.1 Proof of Proposition 11.1 for $p \ge 2$. 237
		11.2 Proof of Proposition 11.1 for 1	. 237
	12	Linear functionals in $L^p(E)$. 238
	13	The Riesz representation theorem	
		13.1 Proof of Theorem 13.1: The case where $\{X, A, \mu\}$ is finite .	. 240
		13.2 Proof of Theorem 13.1: The case where $\{X, \mathcal{A}, \mu\}$ is σ -finite	. 241
		13.3 Proof of Theorem 13.1: The case where $1 $. 242
	14	The Hanner and Clarkson inequalities	. 243
		14.1 Proof of Hanner's inequalities	. 244
		14.2 Proof of Clarkson's inequalities	. 245
	15	Uniform convexity of $L^{p}(E)$ for $1 $	
	16	The Riesz representation theorem by uniform convexity	. 247
		16.1 Proof of Theorem 13.1: The case where $1 $	
		16.2 The case where $p = 1$ and E is of finite measure \ldots	248
		16.3 The case where $p = 1$ and $\{X, A, \mu\}$ is σ -finite	249
	17	Bounded linear functional in $L^{p}(E)$ for $0 $	250
		17.1 An alternate proof of Proposition 17.1	250
	18	If $E \subset \mathbb{R}^N$ and $p \in [1, \infty)$, then $L^p(E)$ is separable	251
		18.1 $L^{\infty}(E)$ is not separable	254
	19	Selecting weakly convergent subsequences	254
	20	(\mathbf{z}) for $\mathbf{z} = p < 00$	255
	21	Approximating functions in $L^{p}(E)$ with functions in $C^{\infty}(E)$	257
	22	Characterizing precompact sets in $L^p(E)$	
	Pro	blems and Complements	262
VI	т	Demost Survey	~
V I	1 1	Banach Spaces	275
	I	Normed spaces	
	2		
	2	Finite- and infinite-dimensional normed spaces2.1A counterexample	211
		2.1 A counterexample 2.2 The Riesz lemma	211
	3	2.3 Finite-dimensional spaces	279
	4	Examples of maps and functionals	280
	7	4.1 Functionals	
		4.2 Linear functionals on $C(\overline{E})$	203
	5	Kernels of maps and functionals	203
	6	Equibounded families of linear maps	∠04 285
	č	6.1 Another proof of Proposition 6.1	205
	7	Contraction mappings	200
	•	7.1 Applications to some Fredholm integral equations	280
			207

x Contents

	8	The open mapping theorem	
		8.1 Some applications	. 289
		8.2 The closed graph theorem	. 289
	9	The Hahn–Banach theorem	. 290
	10	Some consequences of the Hahn–Banach theorem	
		10.1 Tangent planes	. 295
	11	Separating convex subsets of X	
	12	Weak topologies	. 297
		12.1 Weakly and strongly closed convex sets	. 299
	13	Reflexive Banach spaces	
	14	Weak compactness	. 301
		14.1 Weak sequential compactness	
	15	The weak* topology	. 303
	16	The Alaoglu theorem	
	17	Hilbert spaces	. 306
		17.1 The Schwarz inequality	. 307
		17.2 The parallelogram identity	. 307
	18	Orthogonal sets, representations, and functionals	
		18.1 Bounded linear functionals on H	
	19	Orthonormal systems	
		19.1 The Bessel inequality	. 311
		19.2 Separable Hilbert spaces	. 312
	20	Complete orthonormal systems	
		20.1 Equivalent notions of complete systems	
		20.2 Maximal and complete orthonormal systems	. 313
		20.3 The Gram–Schmidt orthonormalization process	
		20.4 On the dimension of a separable Hilbert space	
	Pro	blems and Complements	. 314
VI	IS	Spaces of Continuous Functions, Distributions, and Weak	
	1	Derivatives	325
	1	Spaces of continuous functions	. 325
		1.1 Partition of unity	. 326
	2	Bounded linear functionals on $C_o(\mathbb{R}^N)$	
		2.1 Remarks on functionals of the type (2.2) and (2.3)	
		2.2 Characterizing $C_o(\mathbb{R}^N)^*$. 328
	3	Positive linear functionals on $C_o(\mathbb{R}^N)$	
	4	Proof of Theorem 3.3: Constructing the measure μ	. 331
	5	Proof of Theorem 3.3: Representing T as in (3.3)	. 333
	6	Characterizing bounded linear functionals on $C_o(\mathbb{R}^N)$. 335
		6.1 Locally bounded linear functionals on $C_o(\mathbb{R}^N)$. 335
		6.2 Bounded linear functionals on $C_{\rho}(\mathbb{R}^N)$. 336
	7	A topology for $C_o^{\infty}(E)$ for an open set $E \subset \mathbb{R}^N$. 337
	8	A metric topology for $C_o^{\infty}(E)$. 339
		8.1 Equivalence of these topologies	. 340

		8.2 $D(E)$ is not complete	. 341
	9	A topology for $C_o^{\infty}(K)$ for a compact set $K \subset E$. 341
		9.1 A metric topology for $C_o^{\infty}(K)$. 342
		9.2 $\mathcal{D}(K)$ is complete	
	10	Relating the topology of $D(E)$ to the topology of $\mathcal{D}(K)$. 343
		10.1 Noncompleteness of $D(E)$. 344
	11	The Schwartz topology of $\mathcal{D}(E)$	
	12	$\mathcal{D}(E)$ is complete	. 346
		12.1 Cauchy sequences in $\mathcal{D}(E)$. 347
		12.2 The topology of $\mathcal{D}(E)$ is not metrizable	
	13	Continuous maps and functionals	. 348
		13.1 Distributions on E	. 348
		13.2 Continuous linear maps $T : \mathcal{D}(E) \to \mathcal{D}(E) \dots \dots \dots$	
	14	Distributional derivatives	. 349
		14.1 Derivatives of distributions	
		14.2 Some examples	
		14.3 Miscellaneous remarks	
	15	Fundamental Solutions	
		15.1 The fundamental solution of the wave operator	
		15.2 The fundamental solution of the Laplace operator	
	16	Weak derivatives and main properties	
	17	Domains and their boundaries	
		17.1 ∂E of class C^1	
		17.2 Positive geometric density	
		17.3 The segment property	
		17.4 The cone property	
		17.5 On the various properties of ∂E	359
	18	More on smooth approximations	359
	19	Extensions into $\mathbb{R}^{\hat{N}}$	361
	20	The chain rule	
	21	Steklov averagings	365
	22	Characterizing $W^{1,p}(E)$ for $1 $	367
		22.1 Remarks on $W^{1,\infty}(E)$	368
	23	The Rademacher theorem	
	Pro	blems and Complements	
VI	пт	Copics on Integrable Functions of Real Variables	375
V 1.	1	Vitali-type coverings	
	2	The maximal function	
	3	Strong L^p estimates for the maximal function	
	5	3.1 Estimates of weak and strong type	
	4	The Calderón–Zygmund decomposition theorem	
	5	Functions of bounded mean oscillation	201
	6	Proof of Theorem 5.1	381
	7	The sharp maximal function	
	•	F	507

xii Contents

	8	Proof of the Fefferman–Stein theorem	388
	9	The Marcinkiewicz interpolation theorem	
	-	9.1 Quasi-linear maps and interpolation	
	10	Proof of the Marcinkiewicz theorem	
	11	Rearranging the values of a function	
	12	Basic properties of rearrangements	
	13	Symmetric rearrangements	
	14	A convolution inequality for rearrangements	
		14.1 Approximations by simple functions	
	15	Reduction to a finite union of intervals	
	16	Proof of Theorem 14.1: The case where $T + S \le R$	
	17	Proof of Theorem 14.1: The case where $S + T > R$	
		17.1 Proof of Lemma 17.1	
	18	Hardy's inequality	
	19	A convolution-type inequality	409
		19.1 Some reductions	
	20	Proof of Theorem 19.1	
	21	An equivalent form of Theorem 19.1	411
	22	An <i>N</i> -dimensional version of Theorem 21.1	
	23	L^p estimates of Riesz potentials	
	24	The limiting case $p = N$	415
	Pro	blems and Complements	417
**7		$\mathbf{e}_{\mathbf{T}} = \mathbf{e}_{\mathbf{T}} $	122
IX		Embeddings of $W^{1,p}(E)$ into $L^q(E)$	423
IX	1	Multiplicative embeddings of $W_o^{1,p}(E)$	423
IX	1 2	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$	423 425
IX	1 2 3	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$	423 425 425
IX	1 2 3 4	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded	423 425 425 425 428
IX	1 2 3	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $1 \le p < N$, concluded	423 425 425 428 428
IX	1 2 3 4	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$	423 425 425 428 428 428 429
IX	1 2 3 4 5	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$	423 425 425 425 428 428 428 429 430
IX	1 2 3 4 5	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded	423 425 425 428 428 428 429 430 430
IX	1 2 3 4 5 6 7	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded	423 425 425 428 428 428 429 430 430 431
IX	1 2 3 4 5 6 7 8	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$	423 425 425 428 428 428 429 430 430 431 432
IX	1 2 3 4 5 6 7 8 9	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$	423 425 425 428 428 429 430 430 430 431 432 433
IX	1 2 3 4 5 6 7 8	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1	423 425 425 428 428 428 429 430 430 430 431 432 433 435
IX	1 2 3 4 5 6 7 8 9	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1	423 425 425 428 428 429 430 430 430 431 432 433 435 435
IX	1 2 3 4 5 6 7 8 9 10	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1	423 425 425 428 428 429 430 430 430 431 432 433 435 435 437
IX	1 2 3 4 5 6 7 8 9 10 11	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1 Proof of Theorem 8.1 Poincaré inequalities	423 425 425 428 428 429 430 430 430 430 431 432 433 435 435 437 438
IX	1 2 3 4 5 6 7 8 9 10	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1 Poincaré inequalities 10.1 The Poincaré inequality The discrete isoperimetric inequality	423 425 425 428 428 428 429 430 430 431 432 433 435 435 435 435 437 438 439
IX	1 2 3 4 5 6 7 8 9 10 11 12	Multiplicative embeddings of $W_o^{1,p}(E)$	423 425 425 428 428 429 430 430 431 432 433 435 435 435 437 438 439 440
IX	1 2 3 4 5 6 7 8 9 10 11 12 13	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded Proof of Theorem 1.1 for $p \ge N > 1$, concluded Con the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1 Proof of Theorem 8.1 10.1 The Poincaré inequality 10.2 Multiplicative Poincaré inequalities The discrete isoperimetric inequality Morrey spaces Limiting embedding of $W^{1,N}(E)$	423 425 425 428 428 429 430 430 431 432 433 435 435 435 437 438 439 440 441
IX	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded On the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1 Proof of Theorem 8.1 10.1 The Poincaré inequality 10.2 Multiplicative Poincaré inequalities The discrete isoperimetric inequality Morrey spaces 12.1 Embeddings for functions in the Morrey spaces Compact embeddings	423 425 425 428 428 429 430 430 431 432 433 435 435 435 437 438 439 440 441
IX	1 2 3 4 5 6 7 8 9 10 11 12 13	Multiplicative embeddings of $W_o^{1,p}(E)$ Proof of Theorem 1.1 for $N = 1$ Proof of Theorem 1.1 for $1 \le p < N$ Proof of Theorem 1.1 for $1 \le p < N$, concluded Proof of Theorem 1.1 for $p \ge N > 1$ 5.1 Estimate of $I_1(x, R)$ 5.2 Estimate of $I_2(x, R)$ Proof of Theorem 1.1 for $p \ge N > 1$, concluded Proof of Theorem 1.1 for $p \ge N > 1$, concluded Con the limiting case $p = N$ Embeddings of $W^{1,p}(E)$ Proof of Theorem 8.1 Proof of Theorem 8.1 10.1 The Poincaré inequality 10.2 Multiplicative Poincaré inequalities The discrete isoperimetric inequality Morrey spaces Limiting embedding of $W^{1,N}(E)$	423 425 425 428 428 429 430 430 431 432 433 435 435 437 438 439 440 441 443 445

a	
Contents	X111

17	Traces and fractional Sobolev spaces
18	Traces on ∂E of functions in $W^{1,p}(E)$
	18.1 Traces and fractional Sobolev spaces
19	Multiplicative embeddings of $W^{1,p}(E)$
	Proof of Theorem 19.1: A special case
21	Constructing a map between E and Q : Part 1
	Constructing a map between E and Q : Part 2
	Proof of Theorem 19.1, concluded
Pro	blems and Complements
Refere	nces 469

Index