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Preface 

1. Elliptic equations: Harnack estimates and HOlder 
continuity 

Considerable progress was made in the early 1950s and mid-1960s in the theory 
of elliptic equations, due to the discoveries of DeGiorgi [33] and Moser [81,82]. 
Consider local weak solutions of 

{ 
u E Wl~;(n), 

(1.1) 
n a domain in RN 

(aijUXi)x = 0 
j 

in n, 

where the coefficients x --* aij(x), i,j = 1,2, ... , N are assumed to be only 
bounded and measurable and satisfying the ellipticity condition 

(1.2) aji~i~j 2 AI~12, a.e. n, V~ ERN, for some A> o. 
DeGiorgi established that local solutions are HOlder continuous and Moser proved 
that non-negative solutions satisfy the Harnack inequality. Such inequality can be 
used, in turn, to prove the HOlder continuity of solutions. Both authors worked with 
linear p.d.e. 'so However the linearity has no bearing in the proofs. This permits an 
extension of these results to quasilinear equations of the type 

(1.3) { 
u E Wl~:(n), p> 1 

div a(x, u, Du) + b(x, u, Du) = 0, in n, 
with structure conditions 

(1.4) { 
a(x, u, Du) . Du 2 AIDulP - 'P(x), 

la(x, u, Du)1 ::; AIDulp - 1 + 'P(x) , 

Ib(x, u, Du)1 ::; AIDulp - 1 + 'P(x). 

a.e. nT, p> 1 
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Here ° < A ~ A are two given constants and cP E L~c(!]) is non-negative. As a 
prototype we may take 

(1.5) I IP-2 
div Du Du = 0, in Q, p> 1. 

The modulus of ellipticity of (1.5) is IDuI P- 2 • Therefore at points where IDul = 0, 
the p.d.e. is degenerate if p > 2 and it is singular if 1 < p < 2. 

By using the methods of DeGiorgi, Ladyzhenskaja and Ural'tzeva [66] es
tablished that weak solutions of (1.4) are Holder continuous, whereas Serrin [92] 
and Trudinger [96], following the methods of Moser, proved that non-negative 
solutions satisfy a Harnack principle. The generalisation is twofold, i.e., the prin
cipal part a(x, u, Du) is permitted to have a non-linear dependence with respect 
to uX ;' i = 1,2, ... ,N, and a non-linear growth with respect to IDul. The latter 
is of particular interest since the equation in (1.5) might be either degenerate or 
singular. 

2. Parabolic equations: Harnack estimates and HOlder 
continuity 

The first parabolic version of the Harnack inequality is due to Hadamard [50] and 
Pini [86] and applies to non-negative solutions of the heat equation. It takes the 
following form. Let u be a non-negative solution of the heat equation in the cylin
drical domain QT == Q x (0, T), ° < T < 00, and for (xo, to) E QT consider the 
cylinder 

(2.1) Qp == Bp(xo) x (to - p2, to], Bp(xo) == {Ix - xol < p} . 

There exists a constant 'Y depending only upon N, such that if Q2p C QT, then 

(2.2) u(xo, to) ~ 'Y sup u(x, to _ p2) . 
Bp(xo) 

The proof is based on local representations by means of heat potentials. A striking 
result of Moser [83] is that (2.2) continues to hold for non-negative weak solutions 
of 

(2.3) { 
u E V 1,2(QT) == Loo (O,T; L2(.Q)) nL2 (0,T;Wl,2(Q)) , 

Ut - (aij(x,t)ux;)x_ = 0, 10 QT 
3 

where aij E L 00 ( QT ) satisfy the analog of the ellipticity condition (1.2). As before, 
it can be used to prove that weak solutions are locally HOlder continuous in QT. 
Since the linearity of (2.3) is immaterial to the proof, one might expect, as in the 
elliptic case, an extension of these results to quasilinear equations of the type 

(2.4) {
u E V~'P(QT) == L oo (0,T;L2(Q))nv (O,~;Wl'P(Q)), 
Ut - dlva(x,t,u,Du) = b(x,t,u,Du), III QT, 

where the structure condition is as in (1.4). Surprisingly however, Moser's proof 
could be extended only for the case p = 2, i.e., for equations whose principal 
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part has a linear growth with respect to IDul. This appears in the work of Aron
son and Serrin [7] and Trudinger [97]. The methods of DeGiorgi also could not be 
extended. Ladyzenskaja et al. [67] proved that solutions of (2.4) are HOlder contin
uous, provided the principal part has exactly a linear growth with respect to IDul. 
Analogous results were established by Kruzkov [60,61,62] and by Nash [84] by 
entirely different methods. 

Thus it appears that unlike the elliptic case, the degeneracy or singularity of 
the principal part plays a peculiar role, and for example, for the non-linear equation 

(2.5) I IP-2 
Ut - div Du Du = 0, in nT, p> 1, 

one could not establish whether non-negative weak solutions satisfy the Harnack 
estimate or whether a solution is locally HOlder continuous. 

3. Parabolic equations and systems 

These issues have remained open since the mid-1960s. They were revived however 
with the contributions ofN.N. Ural'tzeva [100] in 1968 and K. Uhlenbeck [99] in 
1977. Consider the system 

(3.1) 
Ui E W/;:(n), p> 1, i=I,2, . .. n, 
in n. 

When p > 2, Ural'tzeva and Uhlenbeck prove that local solutions of (3.1) are of 
class cl~~(n), for some a E (0,1). The parabolic version of (3.1) is 

(3.2) 
Ui E V1,p(nT ), i=I,2, ... n, 

in nT. 

Besides their intrinsic mathematical interest, this kind of system arises from geom
etry [99], quasiregularmappings [2,17,55,89] and fluid dynamics [5,8,56,57,74,75]. 
In particular Ladyzenskaja [65] suggests systems of the type of (3.2) as a model 
of motion of non-newtonian fluids. In such a case u is the velocity vector. Non
newtonian here means that the stress tensor at each point of the fluid is not linearly 
proportional to the matrix of the space-gradient of the velocity. 

The function W= IDul 2 is formally a subsolution of 

(3.3) in nT, 

where 

{8 ( )UiX£UiXk} 
ai,k = i,k + p - 2 IDul; . 

This is a parabolic version of a similar finding observed in [99,100] for elliptic 
systems. Therefore a parabolic version of the Ural'tzeva and Uhlenbeck result re
quires some understanding of the local behaviour of solutions of the porous media 
equation 

(3.4) u ~ 0, m > 0, 



viii Preface 

and its quasilinear versions. Such an equation is degenerate at those points of rlT 
where u = 0 if m > 1 and singular if 0 < m < l. 

The porous medium equation has a life of its own. We only mention that 
questions of regularity were first studied by Caffarelli and Friedman. It was shown 
in [21] that non-negative solutions ofthe Cauchy problem associated with (3.4) are 
HOlder continuous. The result is not local. 

A more local point of view was adopted in [20,35,90]. However these con
tributions could only establish that the solution is continuous with a logarithmic 
modulus of continuity. 

In the mid-1980s, some progress was made in the theory of degenerate p.d.e. 's 
of the type of (2.5), for p > 2. It was shown that the solutions are locally Holder 
continuous (see [39]). Surprisingly, the same techniques can be suitably modified 
to establish the local HOlder continuity of any local solution of quasilinear porous 
medium-type equations. These modified methods, in tum, are crucial in proving 
that weak solutions of the systems (3.2) are of class cl~~ (rlT). 

Therefore understanding the local structure of the solutions of (2.5) has im
plications to the theory of systems and the theory of equations with degeneracies 
quite different than (2.5). 

4. Main results 

In these notes we will discuss these issues and present results obtained during 
the past five years or so. These results follow, one way or another, from a sin
gle unifying idea which we call intrinsic rescaling. The diffusion process in (2.5) 
evolves in a time scale determined instant by iqstant by the solution,itself, so that, 
loosely speaking, it can be regarded as the heat equation in its own intrinsic time
configuration. A precise description of this fact as well as its effectiveness is linked 
to its technical implementations. 

We collect in Chap. I notation and standard material to be used as we proceed. 
Degenerate or singular p.d.e. of the type of (2.4) are introduced in Chap. II. We 
make precise their functional setting and the meaning of solutions and we derive 
truncated energy estimates for them. In Chaps. III and VI, we state and prove 
theorems regarding the local and global HOlder continuity of weak solutions of 
(2.4) both for p > 2 and 1 < p < 2 and discuss some open problems. In the singular 
case 1 < p < 2, we introduce in Chap. IV a novel iteration technique quite different 
than that of DeGiorgi [33] or Moser [83]. 

These theorems assume the solutions to be locally or globally bounded. A 
theory of boundedness of solutions is developed in Chap. V and it includes equa
tions with lower order terms exhibiting the Hadamard natural growth condition. 
The sup-estimates we prove appear to be dramatically different than those in the 
linear theory. Solutions are locally bounded only if they belong to L10c (rlT) for 
some r~l satisfying 

(4.1) Ar == N(p - 2) + rp > 0 

and such a condition is sharp. In Chap. XII we give a counterexample that shows 
that if (4.1) is violated, then (2.5) has unbounded solutions. 

The HOlder estimates and the L'''' -bounds are the basis for an organic the
ory of local and global behaviour of solutions of such degenerate and/or singular 
equations. 
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In Chaps. VI and VII we present an intrinsic version of the Harnack estimate 
and attempt to trace their connection with HOlder continuity. The natural parabolic 
cylinders associated with (2.5) are 

(4.2) 

We show by counterexamples that the Harnack estimate (2.2) cannot hold for non
negative solutions of (2.5), in the geometry of (4.2). It does hold however in a 
time-scale intrinsic to the solution itself. These Harnack inequalities reduce to (2.2) 
when p = 2. In the degenerate case p > 2 we establish a global Harnack type 
estimate for non-negative solutions of (1.5) in the whole strip ET == RN X (0, T). 
We show that such an estimate is equivalent to a growth condition on the solution 
as Ixl -+ 00. If max{l; J~l} < p < 2, a surprising result is that the Harnack 
estimate holds in an elliptic form, i.e., holds over a ball Bp at a given time level. 
This is in contrast to the behaviour of non-negative solutions of the heat equation 
as pointed out by Moser [83] by a counterexample. These Harnack estimates in 
either the degenerate or singular case have been established only for non-negative 
solutions of the homogeneous equation (2.5). The proofs rely on some sort of non
linear versions of 'fundamental solutions'. It is natural to ask whether they hold 
for quasilinear equations. This is a challenging open problem and parallels the 
Hadamard [50] and Pini [86] approach viafundamental solutions, versus the 'non
linear' approach of Moser [83]. 

The number p is required to be larger than 2N / (N + 1) and such a condition 
is sharp for a Harnack estimate to hold. The case 1 < p ::s; 2N / (N + 1) is not 
fully understood and it seems to suggest questions similar to those of the limiting 
Sobolev exponent for elliptic equations (see Brezis [19]) and questions in differen
tial geometry. Here we only mention that as p"" 1, (2.5) tends formally to a p.d.e. 
of the type of motion by mean curvature. 

HOlder and Harnack estimates as well as precise sup-bounds coalesce in the 
theory of the Cauchy problem associated with (2.4). This is presented in Chap. XI 
for the degenerate case p > 2 ,and in Chap. XII for the singular case 1 < p < 2. When 
p> 2, we identify the optimal growth of the initial datum as Ixl-+ 00 for a solution, 
local or global in time, to exist. This is the analog of the theory of Tychonov [98], 
Tacklind [94] and Widder [105] for the heat equation. When 1 <p< 2 it turns out 
that any non-negative initial datum U o E LtoJRN) yields a unique solution global 
in time. In general 

2N 
l<p::S; N+l' 

Therefore the main difficulty of the theory is to make precise the meaning of solu
tion. We introduce in Chap. XII a new notion of non-negative weak solutions and 
establish the existence and uniqueness of such solutions. We show by a counterex
ample that these might be discontinuous. Thus, in view of the possible singulari
ties, the notion of solution is dramatically different than the notion of 'viscosity' 
solution. Issues of solutions of variable sign as well as their local and global be
haviour are open. 

(4.3) 

In Chaps. VIII-X, we tum to systems of the type (3.2) and prove that 

(i) e'" (n ) U x' E loc J £T , 
3 

i=1,2, ... ,n, j=1,2, ... ,N, 

provided p > 2N / (N + 1). Analogous estimates are derived for all p > 1 for 
solutions in L[oc(QT), where 7';:::1 satisfies (4.1). Again such a condition is sharp 
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for (4.3) to hold. Near the lateral boundary of fir we establish Co. estimates/or 

all a E (0, 1), provided p > max {I; ;'~2}. Estimates in the class CI,a near the 

boundary are still lacking even in the elliptic case. 

A similar spectrum of results could be developed for equations of the type 
(3.4). We have avoided doing this to keep the theory as organic and unified as 
possible. 

We have chosen not to present existence theorems for boundary value prob
lems associated with (2.4) or (3.2). Theorems of this kind are mostly based on 
Galerkin approximations and appear in the literature in a variety of forms. We re
fer, for example, to [67] or [73]. Given the a priori estimates presented here these 
can be obtained alternatively by a limiting process in a family of approximating 
problems and an application of Minty's Lemma. These notes can be ideally divided 
in four parts: 

1. HOlder continuity and boundedness of solutions (Chapters I-V) 
2. Harnack type estimates (Chapters VI-VII) 
3. Systems (Chapters VIII-X) 
4. Non-negative solutions in a strip ET (Chapters XI-XII). 

These parts are technically linked but they are conceptually independent, in 
the sense that they deal with issues that have developed in independent directions. 
We have attempted to present them in such a way that they can be approached 
independently. 

The motivation in writing these notes, beyond the specific degenerate and 
singular p.d.e., is to present a body of ideas and techniques that are surprisingly 
flexible and adaptable to a variety of parabolic equations bearing, in one way or 
another, a degeneracy or singUlarity. 
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