M. di Bernardo C.J. Budd A.R. Champneys P. Kowalczyk

Piecewise-smooth Dynamical Systems

Theory and Applications

Mario di Bernardo, Laurea; PhD Department of Engineering Mathematics University of Bristol, Bristol BS8 1TR, UK and Department of Systems and Computer Science University of Naples Federico II, Naples, Italy

Alan R. Champneys, BSc; DPhil Department of Engineering Mathematics University of Bristol, Bristol BS8 1TR, UK Christopher J. Budd, MA; DPhil Department of Mathematical Sciences University of Bath, Bath BA2 7AY, UK

Piotr Kowalczyk, MSc; PhD School of Engineering Computer Science and Mathematics, University of Exeter, Exeter EX4 4QF, UK and Department of Engineering Mathematics University of Bristol, Bristol BS8 1TR, UK

Editors:

S.S. Antman	J.E. Marsden	L. Sirovich
Department of Mathematics	Control and Dynamical	Laboratory of Applied
and	Systems, 107-81	Mathematics
Institute for Physical	California Institute of Technology	Department of Biomathematical
Science and Technology	Pasadena, CA 91125	Sciences
University of Maryland	USA	Mount Sinai School of Medicine
College Park, MD 20742-4015	marsden@cds.caltech.edu	New York, NY 10029-6574
USA	-	USA
ssa@math.umd.edu		chico@camelot.mssm.edu

The authors gratefully acknowledge the help of Dr Petri Piiroinen of the National University of Ireland at Galway, who used his novel numerical routines for piecewise-smooth dynamical systems to create the cover figure.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

ISBN: 978-1-84628-039-9 e-ISBN: 978-1-84628-708-4

Printed on acid-free paper

Library of Congress Control Number: 2007937295

Mathematics Subject Classification (2000): 34A36; 70K50; 37D45; 93C65; 70E55

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

987654321

Springer Science + Business Media springer.com

Contents

1	Intr	oduct	ion	1	
	1.1	Why	piecewise smooth?	1	
	1.2	Impac	t oscillators	3	
		1.2.1	Case study I: A one-degree-of-freedom impact oscillator	6	
		1.2.2	Periodic motion	13	
		1.2.3	What do we actually see?	18	
		1.2.4	Case study II: A bilinear oscillator	26	
	1.3	Other	examples of piecewise-smooth systems	28	
		1.3.1	Case study III: Relay control systems	28	
		1.3.2	Case study IV: A dry-friction oscillator	32	
		1.3.3	Case study V: A DC–DC converter	34	
	1.4	Non-s	mooth one-dimensional maps	39	
		1.4.1	Case study VI: A simple model of irregular heartbeats .	39	
		1.4.2	Case study VII: A square-root map	42	
		1.4.3	Case study VIII: A continuous piecewise-linear map \ldots	44	
2	Qua	Qualitative theory of non-smooth dynamical systems			
	2.1	Smoot	th dynamical systems	47	
		2.1.1	Ordinary differential equations (flows)	49	
			oralinar, amorelicitar equations (nons) receiver the		
		2.1.2	Iterated maps	53	
		2.1.2 2.1.3	Iterated maps Asymptotic stability	$53 \\ 58$	
		$2.1.2 \\ 2.1.3 \\ 2.1.4$	Iterated maps Asymptotic stability Structural stability Structural stability	53 58 59	
		$2.1.2 \\ 2.1.3 \\ 2.1.4 \\ 2.1.5$	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps	53 58 59 63	
		$2.1.2 \\ 2.1.3 \\ 2.1.4 \\ 2.1.5 \\ 2.1.6$	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems Bifurcations of smooth systems	53 58 59 63 67	
	2.2	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecew	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems systems	53 58 59 63 67 71	
	2.2	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecev 2.2.1	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems vise-smooth dynamical systems Piecewise-smooth maps Piecewise-smooth maps	53 58 59 63 67 71 71	
	2.2	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecev 2.2.1 2.2.2	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems sise-smooth dynamical systems Piecewise-smooth maps Piecewise-smooth ODEs	53 58 59 63 67 71 71 73	
	2.2	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecew 2.2.1 2.2.2 2.2.3	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems vise-smooth dynamical systems Piecewise-smooth maps Piecewise-smooth ODEs Filippov systems	53 58 59 63 67 71 71 73 75	
	2.2	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecev 2.2.1 2.2.2 2.2.3 2.2.4	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems vise-smooth dynamical systems Piecewise-smooth maps Piecewise-smooth ODEs Filippov systems Hybrid dynamical systems	$53 \\ 58 \\ 59 \\ 63 \\ 67 \\ 71 \\ 71 \\ 73 \\ 75 \\ 78 \\$	
	2.2 2.3	2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Piecev 2.2.1 2.2.2 2.2.3 2.2.4 Other	Iterated maps Asymptotic stability Structural stability Periodic orbits and Poincaré maps Bifurcations of smooth systems vise-smooth dynamical systems Piecewise-smooth ODEs Filippov systems Filippov systems Hybrid dynamical systems formalisms for non-smooth systems	53 58 59 63 67 71 71 71 73 75 78 83	

		2.3.2	Differential inclusions	. 88
		2.3.3	Control systems	. 91
	2.4	Stabil	lity and bifurcation of non-smooth systems	. 93
		2.4.1	Asymptotic stability	. 94
		2.4.2	Structural stability and bifurcation	. 96
		2.4.3	Types of discontinuity-induced bifurcations	. 100
	2.5	Disco	ntinuity mappings	. 103
		2.5.1	Transversal intersections; a motivating calculation	. 105
		2.5.2	Transversal intersections; the general case	. 107
		2.5.3	Non-transversal (grazing) intersections	. 111
	2.6	Nume	erical methods	. 114
		2.6.1	Direct numerical simulation	. 115
		2.6.2	Path-following	. 118
3	Bor	der-co	ollision in piecewise-linear continuous maps	191
U	31	Local	ly piecewise-linear continuous maps	121
	0.1	311	Definitions	124
		3.1.2	Possible dynamical scenarios	. 125
		3.1.3	Border-collision normal form map	.127
	3.2	Bifure	cation of the simplest orbits	.128
	0.2	3.2.1	A general classification theorem	. 128
		3.2.2	Notation for bifurcation classification	. 131
	3.3	Equiv	alence of border-collision classification methods	. 137
		3.3.1	Observer canonical form	. 137
		3.3.2	Proof of Theorem 3.1	. 140
	3.4	One-c	limensional piecewise-linear maps	. 143
		3.4.1	Periodic orbits of the map	. 145
		3.4.2	Bifurcations between higher modes	.147
		3.4.3	Robust chaos	.149
	3.5	Two-o	dimensional piecewise-linear normal form maps	.154
		3.5.1	Border-collision scenarios	.155
		3.5.2	Complex bifurcation sequences	.157
	3.6	Maps	that are noninvertible on one side	. 159
		3.6.1	Robust chaos	. 159
		3.6.2	Numerical examples	. 164
	3.7	Effect	s of nonlinear perturbations	. 169
1	Bifi	urcetic	ons in general niecewise-smooth mans	171
т	41	Types	s of piecewise-smooth maps	171
	4.2	Piece	wise-smooth discontinuous maps	. 174
		4.2.1	The general case	.174
		4.2.2	One-dimensional discontinuous maps	.176
		4.2.3	Periodic behavior: $l = -1$, $\nu_1 > 0$, $\nu_2 < 1$. 180
		4.2.4	Chaotic behavior: $l = -1$. $\nu_1 > 0$. $1 < \nu_2 < 2$. 185
	4.3	Squar	re-root maps	. 188
	-	1	1	

		4.3.1	The one-dimensional square-root map	188
		4.3.2	Quasi one-dimensional behavior	193
		4.3.3	Periodic orbits bifurcating from the border-collision	199
		4.3.4	Two-dimensional square-root maps	205
	4.4	Highe	er-order piecewise-smooth maps	210
		4.4.1	Case I: $\gamma = 2$	211
		4.4.2	Case II: $\gamma = 3/2$	213
		4.4.3	Period-adding scenarios	214
		4.4.4	Location of the saddle-node bifurcations	217
5	Βοι	indary	v equilibrium bifurcations in flows	219
	5.1	Piecev	wise-smooth continuous flows	219
		5.1.1	Classification of simplest BEB scenarios	221
		5.1.2	Existence of other attractors	225
		5.1.3	Planar piecewise-smooth continuous systems	226
		5.1.4	Higher-dimensional systems	229
		5.1.5	Global phenomena for persistent boundary equilibria	232
	5.2	Filipp	pov flows	233
		5.2.1	Classification of the possible cases	235
		5.2.2	Planar Filippov systems	237
		5.2.3	Some global and non-generic phenomena	242
	5.3	Equili	ibria of impacting hybrid systems	245
		5.3.1	Classification of the simplest BEB scenarios	246
		5.3.2	The existence of other invariant sets	249
6	Lin	nit cvc	le bifurcations in impacting systems	253
	6.1	The in	mpacting class of hybrid systems	253
		6.1.1	Examples	255
		6.1.2	Poincaré maps related to hybrid systems	261
	6.2	Disco	ntinuity mappings near grazing	265
		6.2.1	The geometry near a grazing point	266
		6.2.2	Approximate calculation of the discontinuity mappings.	271
		6.2.3	Calculating the PDM	271
		6.2.4	Approximate calculation of the ZDM	273
		6.2.5	Derivation of the ZDM and PDM using Lie derivatives.	274
	6.3	Grazi	ng bifurcations of periodic orbits	279
		6.3.1	Constructing compound Poincaré maps	280
		6.3.2	Unfolding the dynamics of the map	284
		6.3.3	Examples	285
	6.4	Chatt	ering and the geometry of the grazing manifold	295
		6.4.1	Geometry of the stroboscopic map	295
		6.4.2	Global behavior of the grazing manifold \mathcal{G}	296
		6.4.3	Chattering and the set $G^{(\infty)}$	299
	6.5	Multi	ple collision bifurcation	302
			-	

7	\mathbf{Lim}	it cyc	le bifurcations in piecewise-smooth flows	307
	7.1	Defini	tions and examples	307
	7.2	Grazii	ng with a smooth boundary	318
		7.2.1	Geometry near a grazing point	319
		7.2.2	Discontinuity mappings at grazing	321
		7.2.3	Grazing bifurcations of periodic orbits	325
		7.2.4	Examples	327
		7.2.5	Detailed derivation of the discontinuity mappings	334
	7.3	Bound	lary-intersection crossing bifurcations	340
		7.3.1	The discontinuity mapping in the general case	341
		7.3.2	Derivation of the discontinuity mapping in the	
			corner-collision case	346
		7.3.3	Examples	347
8	Slid	ing bi	furcations in Filippov systems	355
	8.1	Four r	possible cases	355
		8.1.1	The geometry of sliding bifurcations	356
		8.1.2	Normal form maps for sliding bifurcations	359
	8.2	Motiv	ating example: a relay feedback system	364
		8.2.1	An adding-sliding route to chaos	366
		8.2.2	An adding-sliding bifurcation cascade	368
		8.2.3	A grazing-sliding cascade	370
	8.3	Deriva	ation of the discontinuity mappings	373
		8.3.1	Crossing-sliding bifurcation	375
		8.3.2	Grazing-sliding bifurcation	377
		8.3.3	Switching-sliding bifurcation	381
		8.3.4	Adding-sliding bifurcation	382
	8.4	Mapp	ing for a whole period: normal form maps	383
		8.4.1	Crossing-sliding bifurcation	384
		8.4.2	Grazing-sliding bifurcation	390
		8.4.3	Switching-sliding bifurcation	393
		8.4.4	Adding-sliding bifurcation	395
	8.5	Unfold	ding the grazing-sliding bifurcation	396
		8.5.1	Non-sliding period-one orbits	396
		8.5.2	Sliding orbit of period-one	397
		8.5.3	Conditions for persistence or a non-smooth fold	399
		8.5.4	A dry-friction example	399
	8.6	Other	cases	403
		8.6.1	Grazing-sliding with a repelling sliding region —	
			catastrophe	403
		8.6.2	Higher-order sliding	404

9	Furt	her a	pplications and extensions
	9.1	Experi	imental impact oscillators: noise and parameter
		sensiti	vity
		9.1.1	Noise
		9.1.2	An impacting pendulum: experimental grazing
			bifurcations
		9.1.3	Parameter uncertainty
	9.2	Rattlin	ng gear teeth: the similarity of impacting and
		piecew	vise-smooth systems
		9.2.1	Equations of motion
		9.2.2	An illustrative case
		9.2.3	Using an impacting contact model
		9.2.4	Using a piecewise-linear contact model
	9.3	A hyd	raulic damper: non-smooth invariant tori
		9.3.1	The model
		9.3.2	Grazing bifurcations
		9.3.3	A grazing bifurcation analysis for invariant tori441
	9.4	Two-p	arameter sliding bifurcations in friction oscillators 448
		9.4.1	A degenerate crossing-sliding bifurcation
		9.4.2	Fold bifurcations of grazing-sliding limit cycles453
		9.4.3	Two simultaneous grazings
Ref	eren	ces	
Ind	ex		