Luc Devroye László Györfi Gábor Lugosi

A Probabilistic Theory of Pattern Recognition

With 99 Figures

Luc Devroye School of Computer Science McGill University Montreal, Quebec, H3A 2A7 Canada László Györfi Gábor Lugosi Department of Mathematics and Computer Science Technical University of Budapest Budapest Hungary

Managing Editors

I. Karatzas Department of Statistics Columbia University New York, NY 10027, USA

M. Yor CNRS, Laboratoire de Probabilités Université Pierre et Marie Curie 4, Place Jussieu, Tour 56 F-75252 Paris Cedex 05, France

Mathematics Subject Classification (1991): 68T10, 68T05, 62G07, 62H30

Library of Congress Cataloging-in-Publication Data Devroye, Luc. A probabilistic theory of pattern recognition/Luc Devroye, László Györfi, Gábor Lugosi. p. cm. Includes bibliographical references and index.

 1. Pattern perception.
 2. Probabilities.
 I. Györfi, László.

 II. Lugosi, Gábor.
 III. Title.
 Q327.D5
 1996

 003'.52'015192-dc20
 95-44633

Printed on acid-free paper.

© 1996 by Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1996 Softcover reprint of the hardcover 1st edition 1996

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC),

except for brief excerpts in connection with reviews or scholarly analysis.

Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or here after developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Francine McNeill; manufacturing supervised by Jeffrey Taub. Photocomposed copy prepared using Springer's svsing.sty macro.

9876543

SPIN 10830936

ISBN 978-1-4612-6877-2	ISBN 978-1-4612-0711-5 (eBook)
DOI 10.1007/978-1-4612-0711-5	

Contents

Pr	eface		v
1	Intr	1	
2	The Bayes Error		
	2.1	The Bayes Problem	9
	2.2	A Simple Example	11
	2.3	Another Simple Example	12
	2.4	Other Formulas for the Bayes Risk	14
	2.5	Plug-In Decisions	15
	2.6	Bayes Error Versus Dimension	17
	Problems and Exercises		18
3	Inequalities and Alternate Distance Measures		
	3.1	Measuring Discriminatory Information	21
	3.2	The Kolmogorov Variational Distance	22
	3.3	The Nearest Neighbor Error	22
	3.4	The Bhattacharyya Affinity	23
	3.5	Entropy	25
	3.6	Jeffreys' Divergence	27
	3.7	<i>F</i> -Errors	28
	3.8	The Mahalanobis Distance	30
	3.9	f-Divergences	31
	Prob	35	

x	Contents
х	Contents

4	Linear Discri	mination	39		
	4.1 Univari	ate Discrimination and Stoller Splits	40		
	4.2 Linear	Discriminants	44		
	4.3 The Fis	her Linear Discriminant	46		
	4.4 The No	rmal Distribution	47		
	4.5 Empirio	cal Risk Minimization	49		
	4.6 Minimi	zing Other Criteria	54		
	Problems and	Exercises	56		
5	Nearest Neigh	ibor Rules	61		
	5.1 Introdu	ction	61		
	5.2 Notatio	n and Simple Asymptotics	63		
	5.3 Proof o	f Stone's Lemma	66		
	5.4 The As	ymptotic Probability of Error	69		
	5.5 The As	symptotic Error Probability of			
	Weighte	ed Nearest Neighbor Rules	71		
	5.6 k-Neare	est Neighbor Rules: Even k	74		
	5.7 Inequal	ities for the Probability of Error	75		
	5.8 Behavio	or When L* Is Small	78		
	5.9 Nearest	Neighbor Rules When $L^* = 0$	80		
	5.10 Admiss	ibility of the Nearest Neighbor Rule	81		
	5.11 The (k,	l)-Nearest Neighbor Rule	81		
	Problems and I	Exercises	83		
6	Consistency		91		
	6.1 Univers	al Consistency	91		
	6.2 Classifie	cation and Regression Estimation	92		
	6.3 Partition	ning Rules	94		
	6.4 The His	togram Rule	95		
	6.5 Stone's	Theorem	97		
	6.6 The <i>k</i> -N	learest Neighbor Rule	100		
	6.7 Classifie	cation Is Easier Than Regression Function Estimation	101		
	6.8 Smart R	lules	106		
	Problems and I	Exercises	107		
7	Slow Rates of	Convergence	111		
	7.1 Finite T	raining Sequence	111		
	7.2 Slow Ra	ates	113		
	Problems and I	Exercises	118		
8	Error Estimation				
	8.1 Error Co	8	121		
		ng's Inequality	122		
		stimation Without Testing Data	124		
	8.4 Selectin	g Classifiers	125		

		Contents	xi	
	8.5	Estimating the Bayes Error	128	
		ems and Exercises	129	
9		Regular Histogram Rule	133	
	9.1		133	
	9.2 Drohl	Strong Universal Consistency ems and Exercises	142	
	Produ	ems and Exercises	172	
10	Kern	el Rules	147	
	10.1	Consistency	149	
	10.2	Proof of the Consistency Theorem	153	
		Potential Function Rules	159	
	Proble	ems and Exercises	161	
11	Cons	istency of the k-Nearest Neighbor Rule	169	
	11.1	Strong Consistency	170	
	11.2	Breaking Distance Ties	174	
	11.3	Recursive Methods	176	
	11.4	Scale-Invariant Rules	177	
	11.5	Weighted Nearest Neighbor Rules	178	
	11.6	Rotation-Invariant Rules	179	
		Relabeling Rules	180	
	Probl	ems and Exercises	182	
12	Vapn	ik-Chervonenkis Theory	187	
	12.1	Empirical Error Minimization	187	
	12.2	Fingering	191	
	12.3	The Glivenko-Cantelli Theorem	192	
	12.4	Uniform Deviations of Relative Frequencies from Probabilities	196	
	12.5	Classifier Selection	199	
	12.6	Sample Complexity	201	
	12.7	The Zero-Error Case	202	
	12.8	Extensions	206	
	Proble	ems and Exercises	208	
13	Coml	pinatorial Aspects of Vapnik-Chervonenkis Theory	215	
	13.1	Shatter Coefficients and VC Dimension	215	
	13.2	Shatter Coefficients of Some Classes	219	
	13.3	Linear and Generalized Linear Discrimination Rules	224	
	13.4	Convex Sets and Monotone Layers	226	
	Probl	ems and Exercises	229	
14	Lowe	r Bounds for Empirical Classifier Selection	233	
	14.1	Minimax Lower Bounds	234	
	14.2	The Case $L_{\mathcal{C}} = 0$	234	
	14.3	Classes with Infinite VC Dimension	238	

	14.4	The Case $L_{\mathcal{C}} > 0$	239
	14.5	Sample Complexity	245
	Probl	ems and Exercises	247
15	The N	Maximum Likelihood Principle	249
	15.1		249
	15.2	The Maximum Likelihood Method: Regression Format	250
	15.3	Consistency	253
	15.4	Examples	256
	15.5	Classical Maximum Likelihood: Distribution Format	260
	Proble	ems and Exercises	261
16	Para	metric Classification	263
	16.1	Example: Exponential Families	266
	16.2		267
	16.3	Minimum Distance Estimates	270
	16.4	Empirical Error Minimization	275
	Proble	ems and Exercises	276
17	Gene	ralized Linear Discrimination	279
	17.1	Fourier Series Classification	280
	17.2	Generalized Linear Classification	285
	Proble	ems and Exercises	287
18	Comp	plexity Regularization	289
	18.1	Structural Risk Minimization	290
	18.2	Poor Approximation Properties of VC Classes	297
	18.3	Simple Empirical Covering	297
	Proble	ems and Exercises	300
19	Cond	ensed and Edited Nearest Neighbor Rules	303
	19.1	Condensed Nearest Neighbor Rules	303
	19.2	Edited Nearest Neighbor Rules	309
	19.3		309
	Proble	ems and Exercises	312
20	Tree (Classifiers	315
	20.1	Invariance	318
	20.2	Trees with the X-Property	319
	20.3	Balanced Search Trees	322
	20.4	Binary Search Trees	326
		The Chronological k-d Tree	328
	20.6	-	332
	20.7	•	333
	20.8	Best Possible Perpendicular Splits	334
	20.9	Splitting Criteria Based on Impurity Functions	336

		Contents	xiii
	20.10 A Consistent Splitting Criterion		340
	20.10 A consistent spinning enterior		341
	20.12 Primitive Selection		343
	20.13 Constructing Consistent Tree Classifiers		346
	20.14 A Greedy Classifier		348
	Problems and Exercises		357
21	Data-Dependent Partitioning		363
	21.1 Introduction		363
	21.2 A Vapnik-Chervonenkis Inequality for Partitions		364
	21.3 Consistency		368
	21.4 Statistically Equivalent Blocks		372
	21.5 Partitioning Rules Based on Clustering		377
	21.6 Data-Based Scaling		381
	21.7 Classification Trees		383
	Problems and Exercises		383
22	Splitting the Data		387
	22.1 The Holdout Estimate		387
	22.2 Consistency and Asymptotic Optimality		389
	22.3 Nearest Neighbor Rules with Automatic Scaling		391
	22.4 Classification Based on Clustering		392
	22.5 Statistically Equivalent Blocks		393
	22.6 Binary Tree Classifiers		394
	Problems and Exercises		395
23	The Resubstitution Estimate		397
	23.1 The Resubstitution Estimate		397
	23.2 Histogram Rules		399
	23.3 Data-Based Histograms and Rule Selection		403
	Problems and Exercises		405
24	Deleted Estimates of the Error Probability		407
	24.1 A General Lower Bound		408
	24.2 A General Upper Bound for Deleted Estimates		411
	24.3 Nearest Neighbor Rules		413
	24.4 Kernel Rules		415
	24.5 Histogram Rules		417
	Problems and Exercises		419
25	Automatic Kernel Rules		423
	25.1 Consistency		424
	25.2 Data Splitting		428
	25.3 Kernel Complexity		431
	25.4 Multiparameter Kernel Rules		435

xiv Contents

	25.5	Kernels of Infinite Complexity	436
	25.6	On Minimizing the Apparent Error Rate	439
	25.7	Minimizing the Deleted Estimate	441
	25.8	Sieve Methods	444
	25.9	Squared Error Minimization	445
	Probl	ems and Exercises	446
26	Auto	matic Nearest Neighbor Rules	451
	26.1	Consistency	451
	26.2	Data Splitting	452
	26.3	Data Splitting for Weighted NN Rules	453
	26.4	Reference Data and Data Splitting	454
	26.5	Variable Metric NN Rules	455
	26.6	Selection of k Based on the Deleted Estimate	457
	Probl	ems and Exercises	458
27	Нуре	ercubes and Discrete Spaces	461
	27.1	Multinomial Discrimination	461
	27.2	Quantization	464
	27.3	Independent Components	466
	27.4	Boolean Classifiers	468
	27.5	Series Methods for the Hypercube	470
	27.6	Maximum Likelihood	472
	27.7	Kernel Methods	474
	Proble	ems and Exercises	474
28	Epsil	on Entropy and Totally Bounded Sets	479
	28.1	Definitions	479
	28.2	Examples: Totally Bounded Classes	480
		Skeleton Estimates	482
	28.4	Rate of Convergence	485
	Proble	ems and Exercises	486
29	Unifo	rm Laws of Large Numbers	489
	29.1	Minimizing the Empirical Squared Error	489
	29.2	Uniform Deviations of Averages from Expectations	490
	29.3	Empirical Squared Error Minimization	493
	29.4	Proof of Theorem 29.1	494
	29.5	Covering Numbers and Shatter Coefficients	496
	29.6	Generalized Linear Classification	501
	Proble	ems and Exercises	505
30	Neura	al Networks	507
	30.1	Multilayer Perceptrons	507
	30.2	Arrangements	511

			Contents	xv
				517
	30.3	Approximation by Neural Networks		517 521
	30.4	VC Dimension		526
	30.5	L_1 Error Minimization The Adaline and Padaline		531
	30.6			532
	30.7 30.8	Polynomial Networks Kolmogorov-Lorentz Networks and Additive Models		534
	30.8 30.9	Projection Pursuit		538
		Radial Basis Function Networks		540
		ems and Exercises		542
	FIODIC			0.12
31	Other	Error Estimates		549
	31.1	Smoothing the Error Count		549
	31.2	Posterior Probability Estimates		554
	31.3	Rotation Estimate		556
	31.4	Bootstrap		556
	Proble	ems and Exercises		559
32	Featu	re Extraction		561
34		Dimensionality Reduction		561
	32.2			567
		Admissible and Sufficient Transformations		569
	02.0	ems and Exercises		572
Ар	pendix			575
	A.1	Basics of Measure Theory		575
	A.2	The Lebesgue Integral		576
	A.3	Denseness Results		579
	A.4	Probability		581
	A.5	Inequalities		582
	A.6	Convergence of Random Variables		584
	A.7	Conditional Expectation		585
	A.8	The Binomial Distribution		586
	A.9	The Hypergeometric Distribution		589
		The Multinomial Distribution		589
		The Exponential and Gamma Distributions		590 590
	A.12	The Multivariate Normal Distribution		390
No	tation			591
Re	ferenc	25		593
Au	thor II	ndex		619
Su	Subject Index			627