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Introduction to Volume 5 

This volume and Vol. 6 form the third part of a coherent work which we intend to 
be useful to engineers, physicists, chemists(l), etc ... who need a method to solve 
their stationary or evolutionary problems. 
1) These two volumes study evolution problems(2), that is to say, problems depend
ing on time. These may, for example, be of the form: find a solution u(x, t) of 

{ 
~~ + Au = f, X E Q, t > 0 

u It = 0 = Uo in Q 

(P) 

with conditions on u on the boundary CW, t > O. 
Volume 5 starts with Chap. XIV, which treats problems in IR" (i.e. problem (P) with 
Q = IR"; that is, Cauchy problems). We introduce, at that stage, the types of 
problems which we shall consider throughout Vol. 3, problems related to the heat 
flow equation (also called the diffusion equation), problems related to the wave 
equation and problems related to the Schrodinger equation. 
Chapter XV treats problem (P) in Q c IR" by diagonalising the operator A, that is 
to say by using the spectral decomposition of the operator A, which we assume to be 
self-adjoint. To this end we use the results of the spectral theory presented in 
Chap. VIII. The method of diagonalisation (also called the Fourier method) leads 
to an explicit form of the solution in modes, which is very useful in physical or 
mechanical applications. But these are only calculable if we can perform a 
numerical calculation of the spectral decomposition of A (3). 

The method ofthe Laplace transform of problem (P) (with respect to the variable t), 
which is often used in such applications as electronics, control systems, robotics 
etc ... , is treated in Chap. XVI. The method of Laplace transformation also gives 
us an explicit expression for the solution. But this, as we shall see in Chap. XV, is 
not always numerically calculable(3). 
In Chap. XVII, we show that for a large class of problems, the solution u of 
problem (P) can be put in the form u(t) = G(t)uo; {G(t)} is then a family of 
operators depending on time t, called a semigroup because of the property 
G(t + s) = G(t)G(s) for all t and s ~ 0 (we have a group if the same condition 

(1) We refer in the text to these various categories as 'practitioners'. 
(2) Recall that Vols. 1 to 4 treated stationary problems, that is to say problems independent of time. 
These are, for example, of the form: find a solution u of Au = f in a domain fl, A being a differential or 
integro-differential operator, with conditions on u on the boundary iJD of D. 

(3) An expression for the numerically calculated solution will be proposed in Chap. XVIII. 
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holds for t and s of arbitrary sign). We shall study the relations between the 
operator A and the family {G(t)} which we symbolise by writing: 

G(t) = etA. 

Numerous particular cases of families {G(t)} are treated: {G(t)} unitary (a propos 
of which we study Stone's theorem), compact, differentiable, holomorphic, con
traction, etc .. , These semi groups characterise the modes of evolution that allow 
us to better understand the properties of the functions u(t) which are solutions of 
problem (P). 
These categories of semigroups are met in the solutions of the three types of 
problems cited above and allow a profound study of the solutions (always written 
in an explicit form, but whose numerical expressions may be difficult to 
calculate(3»). 
The Trotter formula, which allows us to give a precise meaning to certain limits in 
semi groups (like the Feynman-Kac formula) ends this chapter. 
The Laplace transform and semigroup methods do not assume the operators are 
self-adjoint but instead assume the coefficients are independent of time. However, we 
can - particularly with semi-groups - approach problems in which the coefficients 
depend on time, which is very important, particularly for nonlinear problems; we 
must then make hypotheses, that are technically complicated, on the way in which 
the domains of the operators A(t) (which replace A in the formulation of problem 
(P)) depend on t. We refer, in particular, to the work of T. Kato. 
The simplest and most powerful methods which are at the same time applicable to 
asymmetric, time-dependent operators are variational methods. 
Chapter XVIII deals with these methods, which allow us to construct the solution u of 
problem (P) (by using finite-dimensional spaces). Further, they have, as we have 
said, the advantage of allowing us to treat problems more general than do the 
above methods. Besides problems of the above type in their most general form 
(coefficients depending on x and t), some new problems (such as delay problems) 
are discussed. This chapter is therefore the centre of Vol. 3, and many of the 
mathematical tools previously developed lead to it. Additionally the variational 
methods developed are "a point of departure" for the study of nonlinear cases. 

2) As before, in the writing of Vol. 5 we have had the benefit of the collaboration of 
numerous colleagues. We give below the authors of various contributions, chapter 
by chapter: 

Chapter XIV: M. Artola, M. Cessenat 
Chapter X V: M. Artola, M. Cessenat, H. Lanchon 
Chapter X VI: M. Artola, M. Cessenat 
Chapter XVII: M. Artola, M. Cessenat 
Chapter XVIII: M. Artola, M. Cessenat. 

We also thank P. Bimilan, A. Gervat, R. Glowinski, P. A. Raviart, L. Tartar and 
R. Temam for reading certain texts, for their advice and for their suggestions. 
We extend particular thanks to M. Artola for his essential role in the writing of 
Chaps. XIV to XVIII. 
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M. Cessenat has continued, in this volume, his task of careful rereading, accom
panied by some very judicious suggestions and propositions. Moreover, he has 
contributed to Chaps. XIV to XVIII, in particular in the examples, but also in 
numerous aspects of the exposition of the methods .. 
We renew our thanks to J. M. Moreau, whose effort is maintained with the same 
efficiency as in the previous volumes. 

3) Our objective, pursued in the course of these volumes, has been the mathema
tical and numerical study of linear models encountered in the natural and technical 
sciences, however many analogous models are to be found in the life sciences and 
economics. 
The process of mathematical modelling is complex. It is evolving rapidly, thanks 
above all to that fantastic tool, the computer (which is clearly still far from reaching 
its limits). Indeed, computers allow us to approximate the mathematical model by 
sets of equations judged, until now, to be totally intractable. This has, naturally, 
strongly encouraged practitioners to reconsider, complete, and refine their various 
models, and make them, little by little, closer to "reality". 
In general these lead to nonlinear systems, but one of the most powerful tools for 
the study of systems of nonlinear partial differential equations is that of lin ear i
sation. It is therefore indispensable to rely on the linear theories presented here. It is 
obviously not indispensable to know in detail all the methods presented here; but 
faced with a given problem, we must choose a method, and having chosen one, we 
must be able to follow it without reading all the chapters of the book; we hope that 
the different adjoining texts - perspectives, directions for the reader, list of equa
tions, table of notation, index - allow the reader to proceed in this way (this has 
been, we think, achieved, but at the price of repetition and we hope that this will not 
irritate the reader of several successive chapters). 
The ultimate aim is obviously the understanding of phenomena, so as to be able to 
control them, and this understanding comes in three great stages: modelling, 
starting from fundamental physical principles, mathematical and numerical ana
lysis, computer processing and returning to the physical interpretation. It is in this 
perspective that the authors have attempted to place themselves 

Practical Guide for the Reader 

1. Designation of subdivisions of the text: 
number of a chapter: in Roman numerals 

R. Dautray, J.-L. Lions 

number of major division of a chapter: the sign § followed by a numeral 
number of section: a numeral following the above 
number of a sub-section: a numeral following the above. 

Example: II, §3.5.2, denotes chapter II, §3, section 5, subsection 2. 



VIII Introduction to Volume 5 

2. Within each division (§), the equations, definitions, theorems, propositions, 
corollaries, lemmas, remarks and examples are each numbered consecutively 
beginning with the number 1. 

3. The table of notations used is placed at the end of each volume. 
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