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Introduction to Volume 3 

This third volume (which contains Chaps. VIII and IX) continues the study of 
linear stationary boundary value problems and related questions begun in 
volumes 1 and 2. 
The study of the spectral theory of elliptic linear operators is fundamental not 
only to the study of stationary problems in this volume and volume 4, but also 
to the evolution problems studied in volumes 5 and 6. 
In applications, part of the spectrum is often continuous and its treatment is 
delicate. Such difficulties are familiar, for example, in quantum physics. Here the 
tools have been introduced which allow the correct treatment of the continuous 
spectrum. 
In a large number of applications (for example in the theory of neutron diffusion) 
the spectral value "furthest to the right" in the complex plane is real, a situation 
which corresponds to some concrete physical properties of the system. The study 
of this furthest right eigenvalue is the object of the Krein-Rutman Theorem 
presented in the appendix to Chap. VIII. 
Examples of the applications of the theories in Chap. VIII to electromagnetism 
and quantum physics are given in Chap. IX. 
The operators arising in models are differential when they correspond to local 
phenomena (see Chap. V, §1.) Non-local phenomena (for example, action of a 
force at a distance in space, in electromagnetism; or memory in time in viscoelastic 
phenomena; or again, abrupt change in a gas particle's velocity in a collision, and 
the consequential finite variation of velocity in a neutron transport velocity space) 
cannot be modelled using only these differential operators. In particular, integral 
operators playa large role in such models. These models then become integral 
equations (or integro-differential equations, as for example in the case of tran­
sport equations; see Chap. I, § 5). The study of their corresponding equations and 
related stationary problems is continued in the next volume (Volume 4). 

The authors of various contributions in each chapter are 
Chapter VIII: M. Artola (principal), M. Cessenat. 
Chapter IX: M. Cessenat. 

Equally we thank P. G. Ciarlet, G. Fournet, R. Glowinski, B. Mercier, P. Raviart, 
R. Sentis, L. Tartar, H. Viviand for reading certain sections of the text and for 
their advice. 
To M. Cessenat we address our very particular thanks for the permanent and 
eminent contributions which he has continued to make in this volume 3 as in the 
previous two volumes 1 and 2, as well as for his detailed and constructive clarifi­
cations. 



VI Introduction to Volume 3 

We recall the important and indispensable role played by J. M. Moreau of which 
we listed the various aspects in the preface to volume 1 and for which we will not 
be able to thank him enough. 
The reader wishing to proceed rapidly to the essentials of the mathematical and 
numerical methods may use this volume 3 by deferring for a later occasion the 
reading of§4 of Chap. VIII and its appendix, and the whole of Chap. IX (and also 
the appendix "Singular Integrals" in Volume 4). These parts are distinguished by 
an asterisk at the appropriate part of the text, and also in table of contents. 
We have placed at the end of this volume 3 the table of notations used throughout 
all six volumes. 

Practical Guide for the Reader 

1. Designation of subdivisions of the text: 
number of a chapter: in Roman numerals 

R. Dautray, J.-L. Lions 

number of major division of a chapter: the sign § followed by a numeral 
number of section: a numeral following the above 
number of a sub-section: a numeral following the above. 

Example: II, § 3.5.2, denotes chapter II, § 3, section 5, subsection 2. 

2. Within each division (§), the equations, definitions, theorems, propositions, 
corollaries, lemmas, remarks and examples are each numbered consecutively 
beginning with the number 1. 

3. The table of notations used is placed at the end of each volume. 
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