Mathematical Analysis and Numerical Methods for Science and Technology

Springer

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo

Mathematical Analysis and Numerical Methods for Science and Technology

Volume 3 Spectral Theory and Applications

With the Collaboration of Michel Artola and Michel Cessenat

Translated from the French by John C. Amson

Robert Dautray 12 rue du Capitaine Scott 75015 Paris, France

Jacques-Louis Lions Collège de France 3 rue d'Ulm 75231 Paris Cedex 5. France

Title of the French original edition: Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, S. A. © Commissariat à l'Energie Atomique, Paris 1984, 1985

With 4 Figures

Mathematics Subject Classification (1980): 31-XX, 35-XX, 41-XX, 42-XX, 44-XX, 45-XX, 46-XX, 47-XX, 65-XX, 73-XX, 76-XX, 78-XX, 80-XX, 81-XX

Library of Congress Cataloging-in-Publication Data

Dautray, Robert. Mathematical analysis and numerical methods for science and technology.

Translation of: Analyse mathématique et calcul numérique pour les sciences et les techniques.

Includes indexes Bibliography: v. 2, p. -537 Contents: — v. 2 Functional and variational methods/with the collaboration of Michel Artola ... [et al.] v. 3 Spectral theory and applications/with the collaboration of M. Artola, M. Cessenat;

translated from the French by John C. Amson.

1. Mathematical analysis. 2. Numerical analysis. I. Lions, Jacques Louis. II. Title. QA300.D34313 1990 515 88-15089

ISBN-13: 978-3-540-66099-6 DOI: 10.1007/978-3-642-61529-0

e-ISBN-13: 978-3-642-61529-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990, 2000

Production: PRO EDIT GmbH, 69126 Heidelberg, Germany Cover Design: design & production GmbH, 69121 Heidelberg, Germany Typesetting: Macmillan India Limited, Bangalore

SPIN: 10732837 41/3143-5 4 3 2 1 - Printed on acid-free paper

Introduction to Volume 3

This third volume (which contains Chaps. VIII and IX) continues the study of linear stationary boundary value problems and related questions begun in volumes 1 and 2.

The study of the *spectral theory* of elliptic linear operators is fundamental not only to the study of stationary problems in this volume and volume 4, but also to the evolution problems studied in volumes 5 and 6.

In applications, part of the spectrum is often continuous and its treatment is delicate. Such difficulties are familiar, for example, in quantum physics. Here the tools have been introduced which allow the correct treatment of the continuous spectrum.

In a large number of applications (for example in the theory of neutron diffusion) the spectral value "furthest to the right" in the complex plane is real, a situation which corresponds to some concrete physical properties of the system. The study of this furthest right eigenvalue is the object of the Krein-Rutman Theorem presented in the appendix to Chap. VIII.

Examples of the *applications* of the theories in Chap. VIII to electromagnetism and quantum physics are given in Chap. IX.

The operators arising in models are *differential* when they correspond to *local* phenomena (see Chap. V, \$1.) Non-local phenomena (for example, action of a force at a distance in space, in electromagnetism; or memory in time in viscoelastic phenomena; or again, abrupt change in a gas particle's velocity in a collision, and the consequential finite variation of velocity in a neutron transport velocity space) cannot be modelled using only these differential operators. In particular, *integral operators* play a large rôle in such models. These models then become *integral equations* (or integro-differential equations, as for example in the case of transport equations; see Chap. I, \$5). The study of their corresponding equations and related stationary problems is continued in the next volume (Volume 4).

The authors of various contributions in each chapter are *Chapter VIII*: M. Artola (principal), M. Cessenat. *Chapter IX*: M. Cessenat.

Equally we thank P. G. Ciarlet, G. Fournet, R. Glowinski, B. Mercier, P. Raviart, R. Sentis, L. Tartar, H. Viviand for reading certain sections of the text and for their advice.

To M. Cessenat we address our very particular thanks for the permanent and eminent contributions which he has continued to make in this volume 3 as in the previous two volumes 1 and 2, as well as for his detailed and constructive clarifications. We recall the important and indispensable rôle played by J. M. Moreau of which we listed the various aspects in the preface to volume 1 and for which we will not be able to thank him enough.

The reader wishing to proceed rapidly to the essentials of the mathematical and numerical methods may use this volume 3 by deferring for a later occasion the reading of §4 of Chap. VIII and its appendix, and the whole of Chap. IX (and also the appendix "Singular Integrals" in Volume 4). These parts are distinguished by an asterisk at the appropriate part of the text, and also in table of contents.

We have placed at the end of this volume 3 the *table of notations* used throughout all six volumes.

R. Dautray, J.-L. Lions

Practical Guide for the Reader

1. Designation of subdivisions of the text:

number of a chapter: in Roman numerals

number of major division of a chapter: the sign § followed by a numeral number of section: a numeral following the above

number of a sub-section: a numeral following the above.

Example: II, §3.5.2, denotes chapter II, §3, section 5, subsection 2.

2. Within each division (\S) , the equations, definitions, theorems, propositions, corollaries, lemmas, remarks and examples are *each* numbered consecutively beginning with the number 1.

3. The table of notations used is placed at the end of each volume.

Table of Contents

Chapter VIII. Spectral Theory

Intr	oduction	1
§1.	Elements of Spectral Theory in a Banach Space. Dunford Integral and Functional Calculus	2
	1. Resolvant Set and Resolvant Operator. Spectrum of A	2
	2. Resolvant Equation and Spectral Radius	7
	 Dunford Integral and Operational Calculus Isolated Singularities of the Resolvant 	10 13
§2.	Spectral Decomposition of Self-Adjoint and Compact Normal	
	Operators in a Separable Hilbert Space and Applications	16
	1. Hilbert Sums	16
	2. Spectral Decomposition of a Compact Self-Adjoint Operator	20
	3. Spectral Decomposition of a Compact Normal Operator	26
	4. Solution of the Equations $Au = f$. Fredholm Alternative	29
	5. Examples of Applications	30
	6. Spectral Decomposition of an Unbounded Self-Adjoint Operator	20
	7 Stymme Lionwille Decklasses and Applications	38
	7. Sturm-Liouvine Problems and Applications $\dots \dots \dots \dots$	40
	8. Application to the spectrum of the Laplacian in $\Omega \subset \mathbf{K}$.	02
	7. Determining the Eigenvalues of a Sen-Aujoint Operator with Compact Inverse, Min Max and Courant Eisher Formulas	08
	Compact inverse. Min-Max and Courant-risher Formulas	90
§3.	Spectral Decomposition of a Bounded or Unbounded Self-Adjoint	
	Operator	111
	Introduction	111
	1. Spectral Family and Resolution of the Identity. Properties	113
	2. Spectral Family Associated with a Self-Adjoint Operator;	
	Spectral Theorem	120
	3. Properties of the Spectrum of a Self-Adjoint Operator.	
	Multiplicity. Examples	128
	4. Functions of a Self-Adjoint Operator	138
	5. Operators which Commute with A and Functions of A	145
	6. Fractional Powers of a Strictly Positive Self-Adjoint Operator	148

§4.	Hilbert Sum and Hilbert Integral Associated with the Spectral	
	Decomposition of a Self-Adjoint Operator A in a Separable Hilbert	
	Space H^*	54
	1. Canonical Representation Associated with a Self-Adjoint	
	Operator Whose Spectrum is Simple	154
	2. Hilbert Sum Associated with the Spectral Decomposition of a	
	Self-Adjoint Operator A in a Separable (and Complex) Hilbert	
	Space H	159
	3. Hilbert Integral. Diagonalisation Theorem of J. von Neumann	
	and J. Dixmier	166
	4. An Application: The Intermediate Derivative and Trace	
	Theorems	171
	5. Generalised Eigenvectors	175
Ap	pendix. "Krein-Rutman Theorem"*	187

Chapter IX. Examples in Electromagnetism and Quantum Physics*

Introduction	200
Part A. Examples in Electromagnetism	201
§1. Basic Tools: Gradient, Divergence and Curl Operators	201
 Introduction. Definitions (Gradient, Divergence, Curl) The Spaces H(div, Ω) and H(curl, Ω). Principal Properties Kernel and Image of the Gradient, Divergence and Curl 	201 203
Operators. Introduction	213 234
§2. Static Electromagnetism	239
1. Magnetostatics of a Surface Current 2. 2. Electrostatics of a Surface Charge 2. Review of §2 2.	239 251 262
§3. The Spectral Problem in a Bounded Open Domain (Cavity) with Perfect Conductor Boundary Conditions	264
 Definition and Fundamental Properties of the Maxwell Operator A in an Open Domain Ω⊂ ℝ³ with Bounded Boundary Γ=∂Ω Spectral Properties of A in a Bounded Open Domain (Cavity) Review of §3 	265 268 270
 §4. Spectral Problems in a Wave Guide (Cylinder) 1. Introduction 1. Introduction 	271 271
 2. The Maxwell Operator A in a Cylinder. Definition of D(A) and the Trace Theorem 3. Study of the Kernel of the Operator A in the Space H	279 283

C	4. Spectral Decomposition of the Maxwell Operator \mathscr{A} in the Case of a Cylinder ("Wave Guide") $\Omega = \Omega_T \times \mathbb{R}$ with Ω_T a Connected and Regular, Bounded Open Domain in \mathbb{R}^2	285
Spac		510
Part	t B. Examples in Quantum Physics	315
Intro	oduction on the Observables of Quantum Physics	315
§1.	Operators Corresponding to the Position, Momentum and Angular Momentum Observables	316
	1. System Consisting of a Single "Non Relativistic" Particle Without Spin, Located in the Space \mathbb{R}^3	316
	2. System Consisting of a Single "Non Relativistic" Particle with Spin ($\frac{1}{2}$) in \mathbb{R}^3	342
	3. System of a Single Particle Located in a Bounded Domain $\Omega \subset \mathbb{R}^3$	351
	4. System of N Distinguishable non Relativistic Particles in \mathbb{R}^3 .	353
	 System of N Indistinguishable non Relativistic Particles in R³. System of a Single Free Relativistic Particle. Case of a Particle with Spin ½ Satisfying the Dirac Equation	354 359
	7. Other Cases of Relativistic Particles	376
§2.	Hamiltonian Operators in Quantum Physics	382
	1. Definition of Hamiltonian Operators as Self-Adjoint Operators .	382
	2. Hamiltonian Operators and Essentially Self-Adjoint Operators .	402
	 3. Unbounded Below Hamiltonian Operators	418
	(Hamiltonian) Self-Adjoint Operators	428
	5. Continuous Spectrum of (Hamiltonian) Self-Adjoint Operators .	451

Appendix. Some Spectral Notions

1.	General Definitions. Spectrum of a Commutative C*-Algebra	
	and Gelfand Transformation	457
2.	"Continuous Operational Calculus" for a (Bounded) Normal	
	Operator	461
3.	"Continuous Operational Calculus" for an (Unbounded)	
	Self-Adjoint Operator	463
4.	Simultaneous Spectrum of a Commutative Family of (Bounded)	
	Normal Operators	465
5.	"Continuous Operational Calculus" for a Finite Commutative	
	Family of Normal Bounded Operators in \mathcal{H}	466
6.	Simultaneous Spectrum of a Finite Commutative Family of	
	(Unbounded) Self-Adjoint Operators in <i>H</i> ; "Continuous	
	Operational Calculus"	467
	(Unbounded) Self-Adjoint Operators in \mathscr{H} ; "Continuous Operational Calculus"	46

7. Spectral Measure and Basic Measure of a Commutative	
C^* -Algebra	69
8. von Neumann Algebras	71
9. "Bounded Operational Calculus"	73
10. Maximal Commutative von Neumann Algebras	76
11. "Maximal" Spectral Decomposition. "Complete Family of	
Observables which Commute"	76
Bibliography	84
Table of Notations 4	00
	90
Index	04
Contents of Volumes 1, 2, 4–6	37