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Preface 

In the first years of the 1970's Robert Dautray engaged in conversations with 
Jacques Yvon, High-Commissioner of Atomic energy, of the necessity of publish­
ing mathematical works of the highest level to put at the disposal of the scientific 
community a synthesis of the modern methods of calculating physical phe­
nomena. 
It is necessary to get away from the habit of treating mathematical concepts as 
elegant abstract entities little used in practice. We must develop a technique, but 
without falling into an impoverishing utilitarianism. The competence of the 
Commissariat a I'Energie Atomique in this matter can provide a support of 
exceptional value for such an enterprise. 
The work which I have the pleasure to present realises the synthesis ofmathemat­
ical methods, seen from the angle of their applications, and of use in designing 
computer programs. It should be seen as complete as possible for the present 
moment, with the present degree of development of each of the subjects. It is this 
specific approach which creates the richness of this work, at the same time a 
considerable achievement and a harbinger of the future. The encounter to which 
it gives rise among the originators of mathematical thought, the users of these 
concepts and computer scientists will be fruitful for the solution of the great 
problems which remain to be treated, should they arise from the mathematical 
structure itself (for example from non-linearities) or from the architecture of 
computers, such as parallel computers. 
This task has led to planning, spread over ten consecutive years of strenous work, 
by two exceptional men -- the physicist Robert Dautray and the mathematician 
Jacques-Louis Lions. In addition, they have enlisted the assistance of younger 
research workers, so it is fair to include them in our thanks for a work which, 
deemed indispensible thoughout, does not seem to me to have been undertaken 
quite at this level anywhere else in the world. 

Jean Teillac 
High Commissioner of Atomic Energy 



General Introduction 

1. A very great number of the problems of mathematical physics can be "mod­
elled" by partial differential equations. By a "model", we mean a set of equations 
(or inequations) which, together with boundary conditions (expressed on the 
boundary of the spatial domain where the phenomenon is studied) and, when the 
phenomenon is evolutionary, with initial conditions, allow us to define the state 
of the system. This is also called modelling by "distributed systems". 
Naturally the description of the model (or of a model, since the same phe­
nomenon can often be described, in conditions not always strictly equivalent, by 
different state variables) is an important - but not decisive - step. 
Further, we must "study" the model, i.e. deduce qualitative or quantitative prop­
erties which 
(a) recover, in simple conditions, observations (measurements) already made. 
(b) give supplentary information about the system. 
It has been observed for a long time that the majority of the phenomena of 
mathematical physics are non-linear, among the most celebrated cases being 
Boltzmann's equation in statistical mechanics, the Navier-Stokes in fluid mechan­
ics (equations which moreover constitute an approximation to Boltzmann's equa­
tion) von Karman's equations governing the large displacements of flat plates, 
etc. 
However, having the possibility of using in a systematic - and almost "common­
place" way the procedures for calculating approximate solutions of the state of 
the system, precise results can generally only be obtained in [he linear cases. 
Certain physical problems can be modelled directly (i.e. without approximations) 
by linear equations: this is notably the case of the equation of transport of 
neutrons. Other phenomena can be deduced from "truly" non-linear systems 
by neglecting certain terms (which is valid in certain situations: "small" dis­
placements, "slow" motions ... ) produced by linearisation about a particular 
solution. 
As, in addition, the methods brought into play for the solution of linear problems 
play an essential role in all the non-linear situations known to this day, it is 
indispensible to begin with the study of linear distributed models, or again with 
boundary value problems for linear partial differential equations (with brief in­
cursions into the domain of linear integral equations, equations which we can 
deduce from linear partial differential equations, or can appear directly in this 
form). 
It is the aim of this work to study linear distributed models, completely concen­
trating in particular on physical examples (from various sources), by the general 
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methods ollinear analysis (stating very clearly the application of these methods to 
physically important situations), 
We have tried to render the material accessible to a reader the level of whose 
knowledge is pretty nearly that of the Lebesgue integral; the (indispensible) 
theory of distributions is recalled in the Appendix to Volume 2. 

2. The theory of partial differential equations constitutes today one of the impor­
tant topics of scientific understanding. 
The principal reasons for this state of affairs are, on the one hand the progress of 
mathematical analysis and, on the other hand, the arrival of the technique ol 
numerical calculus which remained, for partial differential equations, almost to­
tally inadequate until the 1950's. In effect, the arrival of computers, and their 
immense and unceasing progress, have allowed us - for the first time in history 

to calculate, beginning with the models, quantities which, formerly we were able 
only to estimate very approximately and, perhaps over all, to calculate them 
accurately and rapidly, and hence the (fundamental) possibility for r.esearch 
workers and engineers to be able to use the numerical results for the modification 
or adaptation of scientific arguments, of experiments or of constructions in 
progress. 
All that explains why, in very differing subjects, modelling by partial diflerentia! 
equations, followed by theoretical analysis, then numerical analysis, and then in 
its turn with comparison with experiment has become a basic method olprocedure. 
Every aspect of technical and industrial activity is concerned; this procedure is 
indispensible in the preparation or experiments and of trials and their interpreta­
tion, technical studies, the development of manufacturing processes, mainte­
nance, reliability, etc .. ,. Thus: 
Modern equipment has to operate in high performance with certain materials. In 
the 1950's, the calculation of the strength of materials was carried out with high 
safety factors (for example, 5 or more) on the stress experienced by the material 
of a given piece at a given point. Today, when we calculate a stress with precision, 
the safety factor which we take is of the order of 1.4 or less (for example in 
aeronautical, nuclear, automobile engineering etc .... ) and then in the very best 
conditions for users. 
Similarly, the reliability and security demanded by many modern techniques, 
from nuclear engineering to aeronautics, from aerospace to large public works 
(high speed rail transport, highway construction, generation and distribution of 
electricity, etc .... ) require the accumulation both of the safety factors and, as 
well require that each of the details is studied and is represented with great 
precision. No element is any longer "neglected", then and only then the faithful 
mathematical representation allows us to examine closely the least detail and 
underline the predictions. 
Modelling by distributed systems has become similarly the basis of many disci­
plines in physics (plasmas, new materials, etc .... ) in the space and earth sciences 
(astrophysics, geophysics etc .... ), in chemistry and obviously in all branches of 
mechanics (a number of which have already been cited above). 
Without wishing to draw up here an exhaustive list, we should add that, by 
the intervention, notably of dynamic programming, (non-linear) partial differen-
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tial equations play an important role in the manaf?ement sciences (stocks, energy, 
etc .... ). 
Distributed models are similarly involved, and more and more, in the lile sciences. 

3. Plan of the Work. We give here a general sketch of the content of the chapters 
grouped by volumes. Each volume begins with a slightly more detailed account 
of its contents. 
We begin by giving in Chapter I a list of mathematical models, important in 
applications to physics and to the mechanics of continuous media which can lead 
to linear problems. 
The study of stationary linear problems begins with a review, in Chapter II, of the 
possibilities of making use of classical methods. We discover that their limits are 
quickly reached. We examine in Chapter III the possibilities of applying junc­
tional tran~lormations (Fourier series, the Fourier, Mellin and Hankel transforms 
etc .... ). We touch there similarly on the limitations on their application. These 
limitations show the usefulness of working on sets (of distributions) very much 
more "extensive" than the sets of continuous functions considered in Chapter II: 
these are the spaces of general distributions introduced in Chapter III and the 
Sobolev spaces studied in Chapter IV. 
The study of diflerential operators in the spaces of general distributions allows us 
to distinguish the properties ofthese operators (elliptic, parabolic and hyperbolic 
operators; local character of mathematical models using differential operators; 
characteristics etc .... ) which will serve us well throughout this work; this is the 
subject matter of Chapter V. 
Throughout the whole of this work we shall have to handle operators; "opera­
tions" on these operators and their approximations are explained, in Chapter VI, 
in the mathematical situations used in the present work. 
The mathematical techniques thus gathered together allow us to treat variational 
methods, which make up the subject of Chapter VII and whose potential for 
application extends to many non-linear problems. 
Numerous spectral problems arise in applications (calculation of energy levels 
and states in quantum mechanics, critical conditions in neutronics, transmission 
in a wave guide or in an optical fibre etc .... ). The spectral theory which enables 
us to treat such problems is seen in Chapter VHI within the perspective of typical 
applications; it includes especially the study of the continuous spectrum, source 
of many difficulties. Examples of applications are give in Chapter IX. 
A problem which is elliptic or hyperbolic according to the value of a parameter 
is treated in Chapter X: Tricomi's problem (in fluid mechanics it corresponds to 
the passage from subsonic flight to supersonic flight). 
Mathematical models involving integrals permit the representation of actions 
at a distance (in physical space, electric potential; in time, the memory of a 
viscoelastic body; in the space of velocities, change of velocity as a result of 
collisions). Integral equations which come into play require the methods treated 
in Chapter IX. 
Finally, the numerical methods to treat stationary problems form the subject 
matter of Chapters XlI and XIII. 
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Linear evolution problems are treated first of all in the whole physical space in 
Chapter XIV. 
The diagonalisation method, using the spectral theory of operators, which is the 
basis of several practical methods (giving rise to the decomposition into modes), 
is treated in Chapter XV. The method of the Lap/ace trans!(Jrm can be used to 
treat numerous evolution problems; it is considered in Chapter XVI. 
The solution u (t) of a large class of evolution problems can be written in the form 
u (t) = G ({) U o ' where Uo is the initial value of u and Uo is the initial value of u and 
G (t) a family of operators forming a semi-group. The types of evolution of 
solutions can then be an examination of the various families of semi-groups G (t). 
This provides a method, in certain ways more general than the preceding ones, to 
treat evolution problems. This is the subject of Chapter XVII. 
Finally, the constructive methods of solving evolution problems (using construc­
tions of solution in finite-dimensional spaces), the variational methods, are seen in 
Chapter XVIII 1. The Navin-Stokes problem (in the linearised case) requires 
particular variational methods. These are described in Chapter XIX. 
Chapter XX presents the numerical methods for linear evolution problems. 
The problems involving a transport equation are not included in the categories 
treated in Chapters XIV to XVIII, since they take into account the very particular 
type of properties of the transport operator (transport of neutrons, transport of 
molecules and Boltzmann's equation, transport of charged particles and Vlasov's 
equation). A special chapter, Chapter XXI. is therefore devoted to these prob­
lems. 
Later chapters study other aspects of certain of the problems studied in the 
present work (relations between problems of partial differential equations and 
probabilities, propagation of waves, etc .... ). 

4. The writing of this work has been conceived with the object of making it 
accessible to an engineer or to an aspiring research worker taking only the infor­
mation he needs to treat his problem; a restricted reading is therefore possible if 
the reader is guided by the index, the table of contents and the table of notations. 

5. In producing this work the undersigned have benifitted from the collaboration 
of many colleagues: Michel Artola, Marc Authier, Claude Bardos. Philippe Beni­
lan, Michel Bernadou, Michel Cessenat. Jean-Michel Combes, Andre Gervat, 
Alain Kavenoky, Heh~ne Lanchon, Patrick Lascaux, Bertrand Mercier, Jean­
Claude NedClec, Olivier Pironneau, Jacques Planchard, Bruno Scheurer, Claude 
Wild, Claude Zuily. 
Their contributions and the contributions on specific points due to several other 
colleagues will be acknowledged at the beginning of each volume. 
The manuscript was read with particular care by Michel Cessenat whom we thank 
most warmly. Considering the size and the diversity of this work. the task he 
performed is considerable. In addition, Michel Cessenat proposed complemen­
tary or corrected texts, valuable contributions which we have often retained. 

1 These methods can be similarly extended to non-linear problems. 
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Our thanks go similarly to Jean-Marie Moreau for his important work in compil­
ing the bibliographies for each volume, for reading the text and bringing it to the 
point of publication. 
This work would not have seen the light of day without the support of the Atomic 
Energy Commission (C.E.A.): Jacques Yvon, then High Commissioner of Atomic 
Energy accepted our proposition immediately, as he could foresee its future 
development. He made its publication one of the scientific enterprises of the 
C .E.A. Our respective experiences had, in effect, as early as the end of the 1960's, 
confirmed our belief in the importance of the existence of a work of reference of 
this type. By the beginning of 1970's, we had elaborated our ideas into a plan, 
taking account of the needs of engineers, physicists and workers in mechanics 
etc .... Jacques Yvon together with ourselves, wished to spread and put within 
their grasp the abundant recent work of mathematicians and numerical analysts. 
In the initial period, at the time of preliminary drafts and launching the project, 
we benifitted from the initiative of Robert Lattes, who was then Scientific Adviser 
of the C.E.A. 
We are grateful to Paul Bonnet, Inspector General of the C.E.A. for having 
inaugurated the C.E.A. collection with this work. 
We have greatly valued, and are immensely grateful for, the initial help and 
encouragement of Jules Horowitz, Director at the C.E.A. who with his great 
experience in mathematical physics showed an immediate understanding of our 
alms. 
Nothing would have been achieved in reaching the final result without the clear 
and active understanding of Jacques Chevallier, Director at the C.E.A. 
We thank here also Michel Pecquer and Gerard Renon, Administrator General, 
as well as Jean Teillac, High Commissioner, of the C.E.A. whose constant and 
manifest approval, personally expressed, has been a source of permanent encour­
agement. 

R. Dautray, J.-L. Lions 

Practical Guide for the Reader 

(1) Designation of the subdivisions of the text: 
Number of chapters: in roman numerals; 
N umber of major divisions: the sign § followed by a numeral; 
Number of sections: a numeral following the preceding; 
Number of sub-sections: a numeral following the preceding; 
etc .... 
For example: II, § 3.5.2, denotes Chapter II, § 3, section 5, subsection 2. 
(2) In the interior ()leach division (§), the equations, definitions, theorems, propo­
sitions, corollaries, lemmas, remarks and examples are numbered separately in 
sequence beginning with the numeral 1. 
(3) The table of {he notations used appears at the end of each volume. 
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Chapter I gives the principal physical examples studied in this work (these exam­
ples come from physics, from mechanics, from chemistry, etc .... ). A first (rudi­
mentary) attempt at the classification of the problems is made. 
In all the phenomena modelled by partial differential equations, and for reasons 
that are given in the text, a very important role is played by the Laplacian operator 

a2 a2 a2 

L1=-+-~+-
axi ax~ ax~ 

in rectangular coordinates: This is why Chapter II is devoted to a direct study of 
the principal questions linked with this operator. "direct" signifying here: without 
the use of techniques other than those of classical analysis. 
We give below the authors of various contributions to these two chapters. 

Chapter I: H. Lanchon, M. Cessenat, A. Gervat, A. Kavenoky. 
Chapter II: P. Benilan, sole author of this Chapter. 

We similarly wish to thank R. Balian, C. Bardos, A. Bossavit, C. Cohen-Tan­
noudji, G. Fournet, A. Kavenoky and E. Roubine for reading certain portions of 
the text and for their advice on modifying them. 

The reader wishing to acquaint himself rapidly with the essential mathematical 
and numerical methods should be able to make use of this volume and the 
subsequent Vol. 2 by leaving for a later, deeper study §§ 5-8 of Chapter II of this 
volume and §§ 4, 5 of Chapter V of Vol. 2. These divisions are denoted by an 
asterisk * placed at their beginning, an asterisk which, moreover, appears in the 
table of contents. 
We have placed the table of notations at the end of this volume. 

R. Dautray, J.-L. Lions 
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