Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

1341

Monique Dauge

Elliptic Boundary Value Problems on Corner Domains

Smoothness and Asymptotics of Solutions

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Author

Monique Dauge Unité Associée au CNRS nº 758 Département de Mathématiques et d'Informatique 2, rue de la Houssinière 44072 Nantes Cedex 03, France

Mathematics Subject Classification (1980): Primary: 35J; 47F Secondary: 58G

ISBN 3-540-50169-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-50169-X Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988 Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210

FOREWORD

Many physical phenomena are described by elliptic boundary value problems : let us quote vibrating membranes, elasticity, electrostatics, hydrodynamics for instance. Natural domains are often non-smooth ones or they may be "small perturbations" of such nonregular domains. That is why many people are interested in domains with singularities on their boundaries.

In this book, we deal with a great variety of domains : we consider conical singularities of course, but also edges, polyhedral corners, combined with various types of cracks, holes or slits.

In order to give precise mathematical results, we need to choose a functional framework. So we decided, therefore to choose ordinary hilbertian Sobolev spaces with real exponents (also called Sobolev-Slobodeckii spaces). Other choices are possible, but we prefered this one for several reasons that we explain in the introduction.

We develop a general theory : first, we characterize different fundamental properties of induced operators, in particular regularity, Fredholm and semi-Fredholm properties, and then we give asymptotics of solutions in the neighborhood of singular points of the boundary.

Our results can be applied to specific problems : in such cases, it is often possible to get the characteristic conditions we give more precise. As an example, we do this for the Dirichlet problem associated to the Laplace equation. In another paper, we apply them to the Stokes system.

Moreover, the type of statements we get can be adapted to other problems than those we consider here : for instance to non-homogeneous boundary data, to lifting of traces, and also to the study of such problems in other classes of hilbertian weighted Sobolev spaces.

So our results can be used in direct or indirect ways. More introductory details may be found in the preface and in the first section.

* * *

ACKNOWLEDGMENTS

To end this preamble, I want to thank :

* Pham The Lai and Pierre Grisvard who initiated me to research and to corner problems,

* Bernard Helffer who usefully advised me on many occasions,

* Pierre Bolley, Jacques Camus and Didier Robert for numerous edifying mathematical discussions,

* Jean-Claude Tougeron and Gerd Grubb for constructive remarks about special points of this work,

* Patricia Fouquet for a few corrections concerning my expression in English language

* Isabelle Burgaud, Christine Brunet and Ivahne Rose who contributed with efficiency to type this text on Macintosh;

I also thank Springer-Verlag for publishing this work and for many useful recommendations about its editing.

I think, finally, of my family, my friends and colleagues who helped me with their encouragements.

Nantes, March 5th, 1988.

攀

* * *

✵

TABLE OF CONTENTS

First part : Gene	ralities	
Introduction		2
Chapter 1 : Preli	iminaries	
1.A : 1.B : 1.C : 1.D :	esults, compared with well-known statements Smooth domains and corner domains Domains with conical points 2-codimensional edges 3-dimensional polyhedra Closed range	8 9 11 13 14
§2. Classes	of corner domains	16
	Generalities	16
	Definition algorithms	17
	Boundary structure	20
	Subclasses of \mathcal{O}_n and \mathcal{O}_n	22
2.E :	Singular chains and local coordinates	22
Second part : Di	•	
Chapter 2 : Fred	holm and semi-Fredholm results	
§3. Operato	ors and associated split operators	26
3.A :	Sobolev spaces	26
3.B :	Operators	29
3.C : 3.D :	Singular functions and polynomial functions spaces on a cone Diffeomorphism-invariance	30 31
§4. Injectiv	ity modulo polynomials	33
4.A :	Relation with the holomorphic family $(\mathfrak{L}(\lambda))_{\lambda}$	33
4.B:	Dimension of polynomial spaces P^{λ} and $Q^{\lambda-2m}$	38
4.C:	Inversion operators	39
§5. Main re	sults	40
	Assumptions	40
	Closed range and index results	41
5.C :	Singularities and regularity	42
5.D :	Relation with the conditions of spectral type	44
5.E : 5.F :	Domains with conical singularities Domains with edges	45 46
§6. Additio		47
6.A :	[s, s']-regularity	47

	iai soballo	••
6.A :	[s, s']-regularity	47
6.B :	Propagation of closed range properties and index properties to	neighboring
	exponents s.	48
6.C :	Statements without sub-sections	48

6.C: Statements without sub-sections

7.A : 7.B : 7.C :	y elliptic systems Strongly elliptic systems, some definitions Singular functions spaces and split operators associated to a system Injectivity modulo polynomials Closed range and index results	51 51 53 54 56
Chapter 3. Proof	ŝ	
	omorphisms and preliminary notions	58
8.A : 8.B :	Coercivity A priori estimates in the neighborhood of a point	58 61
	Regularity in the neighborhood of a point	63
8.D :	Uniform estimates	64
§9. Closed	range theorem	65
9.A :	The recurrence	65
	Reduced cones Dihedral cone	66 73
	Necessity of condition (F2)	73
9.E:		ghboring 78
§10. Index	theorem : sufficiency of the condition (N2)	79
10.A:	Recurrence	79
10.B:	Reduced cone and operator with constant coefficients in the neighborh	hood of 0
10 C ·	Reduced cone and operator with variable coefficients	81 85
	Dihedral cone	86
§11. Index 11.A:	theorem : necessity of condition (N2) Proof of lemma (6.7) of propagation of non-injectivity modulo pol	88
11.B:	Proof of : (N1) implies (N2)	90
§12. Comp	lementary proofs	94
12.A	Proof of theorem (6.3)	94
12.B 12.C	Adaptation of the proofs for systems satisfying hypothesis (H2') Adaptation of the proofs for systems satisfying hypothesis (H3')	98 100
Chapter 4. Two-	dimensional domains	
	alities about two-dimensional domains	104
13.A	: Introduction	104
13.B : 13 C :	Limit exponents for the plane crack Injectivity modulo polynomials	105 107
15.0	injectivity modulo polynomials	107
§14. Secon	d order operators	110
14.A	Spectrum of the associated holomorphic family Plane crack	110 115
14.D .		115
§15. Fourth	order operators	117
15.A:	Basis of $\mathfrak{Z}(\lambda)$	117
	Crack	120
15.C:	Hole: $\Gamma^{0} = \mathbf{R}^{2} \setminus \{0\}$	124

1 0	
§16. Singularities along an edge for an operator with translation invaria	nt coefficients 128
16.A : Introduction	128
16.B : Global approach	129
16.C: Localization	127

Chapter 5. Singularities along the edges

\$17. Singularities on a three-dimensional polyhedron for an operator with constant coefficients 145 17.A : Singularities at the vertex 145 17.B : Local coordinates, smoothing operators and pseudo-differential operators along the edges 146 17.C: Singularities along the edges 149

17.D: Meeting of the edges singularities 151

Chapter 6. The Laplace operator

§18. Regularity results about the Laplace operator	153
18.A : Split operators	153
18.B : Spectrum of the spherical Laplace operator	153
18.C: Spectrum in the case of a dihedral cone	154
18.D : Spectrum in the case of a revolution cone	156
18.E: Spectrum in the case of a polyhedral cone with openings π/ℓ , ℓ integer	158
18.F: Regularity results	158
§19. Closed range properties	162
19.A: Link with Hanna and Smith's result	162
19.B : Smoothness of the first eigenvector on the section Ω of a polyhedral	cone T
	163
19.C: Closed range conditions for a polyhedron	164

19.D : Characterization of the range in the case of a rectangular parallelipiped 166

Third part : Variational boundary value problems

Chapter 7. Variational boundary value problems on smooth domains

§20. Formulation and statements	173
20.A : Variational problem	173
20.B : The question of regularity	174
20.C: Intermediate operators and regularity result	175
§21. Proof of the regularity theorem (20.10)	179
21.A : Construction of an auxiliary operator	179
21.B : Coercivity	181
21.C: Normal regularity : case of the half-axis \mathbf{R}_+	182
21.D : Conclusion	184

Chapter 8. Variational boundary value problems on polyhedral domains §22. Formulation 186 186 22.A : Polyhedral domains, admissible set of faces

Dentity in a straighter and a straighter set of theory	100
22.B : Normal systems and Green formula	188
22.C: Stable and transversal conditions	190

 §23. Statements 23.A : Operators 23.B : Injectivity modulo polynomials 23.C : Results 23.D : Extension 23.E : Last comments : what about singularities and non homogeneous bound 	194 194 195 196 199 ary data 202
 §24. Proofs 24.A : Reduction 24.B : Model problem on a reduced cone 24.C : Complements 	205 205 206 211

Fourth part : Appendices

APPENDIX A : Sobolev spaces		214
AA:	Usual and weighted spaces with non negative exponents	215
AB:	Usual spaces : the limit case, $s-n/2 \in \mathbb{N}$	229
AC:	Usual and weighted spaces with null traces	234
	Spaces H ^s , for any real exponent s	237
	Weighted spaces for any real exponent s	240
AF:	Anisotropic spaces : tangential regularity along an edge	242
APPENDIX	B: A link between index and singularities space	243
APPENDIX	C : Analytic behavior of the range	246
APPENDIX	D: Ideals of polynomials which are zero on the boundary of	
	a cone	248
DA:	Preliminaries	248
DB:	Proofs	249
References		253
Subject Inde	EX .	258
Notation Index		259
Tioranon III		