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Many physical phenomena are described by elliptic boundary
value problems let us quote vibrating membranes, elasticity,
electrostatics, hydrodynamics for instance. Natural domains are often
non-smooth ones or they may be "small perturbations" of such non-
regular domains. That is why many people are interested in domains
with singularities on their boundaries.

In this book, we deal with a great variety of domains : we
consider conical singularities of course, but also edges, polyhedral
corners, combined with various types of cracks, holes or slits.

In order to give precise mathematical results, we need to choose
a functional framework. So we decided, therefore to choose ordinary
hilbertian Sobolev spaces with real exponents (also called Sobolev-
Slobodeckii spaces). Other choices are possible, but we prefered this one
for several reasons that we explain in the introduction .

We develop a general theory : first, we characterize different
fundamental properties of induced operators, in particular regularity,
Fredholm and semi-Fredholm properties, and then we give asymptotics
of solutions in the neighborhood of singular points of the boundary.

Our results can be applied to specific problems : in such cases, it
is often possible to get the characteristic conditions we give more
precise. As an example, we do this for the Dirichlet problem associated to
the Laplace equation. In another paper, we apply them to the Stokes
system.

Moreover, the type of statements we get can be adapted to other
problems than those we consider here : for instance to non-homogeneous
boundary data, to lifting of traces, and also to the study of such problems
in other classes of hilbertian weighted Sobolev spaces.

So our results can be used in direct or indirect ways. More
introductory details may be found in the preface and in the first section.
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