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Preface 

In recent years there has been a considerable renewal of interest in the clas
sical problems of the calculus of variations, both from the point of view of 
mathematics and of applications. Some of the most powerful tools for proving 
existence of minima for such problems are known as direct methods. They 
are often the only available ones, particularly for vectorial problems. It is the 
aim of this book to present them. These methods were introduced by Tonelli, 
following earlier work of Hilbert and Lebesgue. 

Although there are excellent books on calculus of variations and on direct 
methods, there are recent important developments which cannot be found 
in these books; in particular, those dealing with vector valued functions and 
relaxation of non convex problems. These two last ones are important in appli
cations to nonlinear elasticity, optimal design .... In these fields the variational 
methods are particularly effective. Part of the mathematical developments and 
of the renewal of interest in these methods finds its motivations in nonlinear 
elasticity. Moreover, one of the recent important contributions to nonlinear 
analysis has been the study of the behaviour of nonlinear functionals un
der various types of convergence, particularly the weak convergence. Two well 
studied theories have now been developed, namely f-convergence and compen
sated compactness. They both include as a particular case the direct methods 
of the calculus of variations, but they are also, both, inspired and have as 
main examples these direct methods. 

This monograph is addressed to readers having some elementary notions 
of functional analysis and Sobolev spaces; however, most of the facts which we 
use, concerning these notions, are listed and sometimes proved in Chapter 2. 
Chapter 3 is concerned with minimization problems involving only scalar 
functions, while Chapter 4 deals with vector valued functions. Finally, in 
Chapter 5 we study the relaxation of non-convex problems in the scalar as well 



VI Preface 

as the vectorial case. In an appendix we give some applications to nonlinear 
elasticity and optimal design of the theory developed earlier. 

This book is part of a more extended project that originally arose jointly 
with L. Boccardo. We finally decided to split it into two parts. This monograph 
corresponds to the first of these and essentially deals with the calculus of 
variations. The second part will be concerned with nonlinear elliptic partial 
differential equations and will appear later. 

A large part of the present book has been influenced by long discussions 
with L. Boccardo, particularly as concerns Chapter 3 and the plan of the 
monograph. Without his collaboration this book would never have been writ
ten. 

I would like to thank I. Ekeland who, from the beginning, showed enthu
siasm for this project and encouraged me strongly to go ahead with it. It was 
while giving a graduate course in Paris-Dauphine that the project of writing 
a book originated. 

I want to thank J.C. Evard who helped me in writing and in dealing with 
complicated notations in the Appendix of Chapter 4. 

My thanks also go to B. Kawohl who pointed out several mistakes in 
the manuscript; to P. Ciarlet who communicated to me the manuscript of 
his recent book which helped me in the writing of the Appendix and of 
the Bibliography; to J.M. Ball, P. Marcellini, J. Moser, E. Zehnder; to my 
colleagues in Lausanne C.A. Stuart, B. Zwahlen and to many others with 
whom I had interesting and helpful discussions. 

Particular thanks go to Mrs G. Rime who not only skilfully and rapidly 
typed the manuscript, but also was patient with all changes and constraints I 
imposed on her. 

Springer-Verlag and the editors of the Applied Mathematical Sciences 
series have been encouraging and efficient during the process of reviewing 
and editing this book. 

Finally I would like to thank the institutions that supported me during 
the writing of this book, the Ecole Poly technique Federale de Lausanne, the 
Universite de Paris-Dauphine and the Eidgenossische Technische Hochschule 
in Zurich. 

Lausanne, October 1988 B. DACOROGNA 
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