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Preface 

For centuries, mathematicians and non-mathematicians alike have been fasci
nated by geometrical problems, particularly problems that are "intuitive," in 
the sense of being easy to state, perhaps with the aid of a simple diagram. 
Sometimes there is an equally simple but ingenious solution; more often any 
serious attempt requires sophisticated mathematical ideas and techniques. 
The geometrical problems in this collection are, to the best of our knowledge, 
unsolved. Some may not be particularly difficult, needing little more than 
patient calculation. Others may require a clever idea, perhaps relating the 
problem to another area of mathematics, or invoking an unexpected techni
que. Some of the problems are very hard indeed, having defeated many 
well-known mathematicians. 

It is hoped that this book will be appreciated at several levels. The research 
mathematician will find a supply of problems to think about, and should he 
or she decide to make a serious attempt to solve some of the them, enough 
references to discover what is already known about the problem. By becoming 
aware of the state of knowledge on certain topics, mathematicians may notice 
links with their own special interest, leading to progress on the problem or on 
their own work. More generally, the book may provide stimulus as "back
ground reading" for mathematicians or others who wish to keep up to date 
with the state of the art of geometrical problems. 

For the interested layman, the book will give an idea of some of the 
problems that are being tackled by mathematicians today. This may lead to 
having a go at some of the problems, discovering the difficulties, and perhaps 
producing a solution, either fallacious or, hopefully, valid. In the area of tiling, 
for example (see Chapter C), patience and, sometimes, the use of a home 
computer, have led amateur mathematicians to impressive results. 
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Preface 

Perhaps this book will convince others that some of the ideas of mathe
matics are not wholly beyond their reach, in that the problems, at least, can 
be understood. This may well lead to the question, "Why are mathematicians 
wasting their time on such esoteric problems?" One justification might be that, 
even if the problems themselves have no direct application, the mathematics 
developed while trying to solve them can be very useful. For example, attempts 
at proving the (rather useless) Four Color Conjecture led to the development 
of Graph Theory, a subject of great practical application. 

In many developed countries the number of young people embarking on 
careers of a mathematical nature is dwindling; it is hoped that books such as 
this may do a little to show them that mathematics is a fascinating subject. 

Each section in the book describes a problem or a group of related prob
lems. Usually the problems are capable of generalization or variation in 
many directions; hopefully the adept reader will think of such variations. 
Frequently, problems are posed in the plane, but could equally well be asked 
in 3- (or higher-) dimensional space (often resulting in a harder problem). 
Alternatively, a question about convex sets, say, might be asked about the 
special case of centro-symmetric convex sets or perhaps in the more general 
situation of completely arbitrary sets, resulting in a problem of an entirely 
different nature. 

For convenience, the problems have been divided into seven chapters. 
However, this division and the arrangement within the chapters is to some 
extent arbitrary. The many interrelationships between the problems make a 
completely natural ordering impossible. 

References for each group of problems are collected at the end of the 
section. A few, indicated by square brackets [ ], refer to the list of Standard 
References at the front of the book; this is done to avoid excessive repetition 
of certain works. Where useful, we have included the number of the review in 
Mathematical Reviews, prefixed by MR. Some sections have few references, 
others a large number. Not all problems have a complete bibliography-a 
full list of articles that relate to Sylvester's Problem (F12), for example, would 
fill the book. However, we have done our best to include those books and 
papers likely to be most helpful to anyone wishing to find out more about a 
problem, including the most important and recent references and survey 
articles. Obviously, these will, in turn, lead to further references. Some books 
and papers listed are not referred to directly in the text but are nonetheless 
relevant. There are inevitably some omissions, for which we apologize. 

This book has a long history, and many correspondents will have despaired 
of its ever appearing. Early drafts date back to about 1960 when HTC started 
to collect problems that were unsolved but easy to state, particularly problems 
on geometry, number theory, and analysis. As a frequent visitor to Cambridge, 
RKG became aware of the collection and started contributing to it. Interest 
was reinforced at the East Lansing Geometry Conference in March 1966, in 
which HTC, RKG, John Conway, Paul Erdos, and Leo Moser participated, 
and where Moser circulated his "Fifty poorly posed problems in combina-
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torial geometry." Encouraged by HTC, Erdos, and Moser, RKG started to 
formalize these lists into a book. The mass of material became far too large 
for a single volume, with the Number Theory "chapter" resembling a book in 
its own right. This was published in 1981 as "Unsolved Problems in Number 
Theory," Volume I of this series. 

The geometry and analysis drafts were regularly updated by HTC until 
about 1970, when the mass of material collected was enormous. However, this 
part of the project became dormant until KJF, a research student of HTC, 
became involved in 1986. By this time, progress had been made on the solution 
of many of the problems, and it was left to KJF with some help from RKG 
to update and rewrite completely most of the sections and to add further 
problems to the collection. 

There are still many problems that we have collected which would be nice 
to share. We have in mind (should we live long enough) Volume III on 
Combinatorics, Graphs, and Games and Volume IV on Analysis. 

We are most grateful to the many people who have, over the past 30 years, 
corresponded and sent us problems, looked at parts of drafts, and made 
helpful comments. These include G. Blind, D. Chakerian, John Conway, 
H. S. M. Coxeter, Roy Davies, P. Erdos, L. Fejes T6th, Z. Fiiredi, R. J. 
Gardner, Martin Gardner, Ron Graham, B. Griinbaum, L. M. Kelly, V. Klee, 
I. Leader, L. Mirsky, Leo Moser, Willy Moser, C. M. Petty, R. Rado, C. A. 
Rogers, L. A. Santal6, Jonathan Schaer, John Selfridge, H. Steinhaus, G. 
Wengerodt, and J. Zaks. The bulk of the technical typing was done by Tara 
Cox and Louise Guy. The figures were drawn by KJF using a combination 
of a computer graphics package and freehand. The staff at Springer-Verlag in 
New York have been courteous, competent, and helpful. 

In spite of this help, many errors and omissions remain. Some of the 
problems may have solutions that are unpublished or in papers that we have 
overlooked, others will doubtless have been solved since going to press. There 
must be many references that we are unaware of. The history of some of the 
problems may have become forgotten or confused-it is often unclear who 
first thought of a particular problem, and many problems undoubtedly occur 
to several people at about the same time. This book will no doubt perpetuate 
such confusion. We can do no more than offer our reluctant apologies for all 
this. We would be glad to hear of any omissions or corrections from readers, 
so that any future revision may be more accurate. Please send such comments 
to KJF. 

Cambridge, Bristol and Calgary, September 1990 HTC, KJF, RKG 
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Journals that publish problems on a regular basis include: American Mathe
matical Monthly, Colloquium M athematicum, Elemente der Mathematik, 
Mathematical lntelligencer, Mathematics Magazine, SIAM Review, and Crux 
Mathematic arum. 
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