Contents

Preface to the First Edition	v
Preface to the Second Edition	vii

CHAPTER 1 Introduction

1.1	What is projective geometry?	1
1.2	Historical remarks	2
1.3	Definitions	5
1.4	The simplest geometric objects	6
1.5	Projectivities	8
	Perspectivities	10

CHAPTER 2 Triangles and Quadrangles

2.1	Axioms	14
2.2	Simple consequences of the axioms	16
	Perspective triangles	18
	Quadrangular sets	20
2.5	Harmonic sets	22

CHAPTER 3 The Principle of Duality

3.1	The axiomatic basis of the principle of duality	24
3.2	The Desargues configuration	26
3.3	The invariance of the harmonic relation	28

3.4	Trilinear polarity	29
3.5	Harmonic nets	30
CHAPTER 4	The Fundamental Theorem and Pappus's Theorem	
4.1	How three pairs determine a projectivity	33
4.2	Some special projectivities	35
4.3	The axis of a projectivity	36
4.4	Pappus and Desargues	38
CHAPTER 5	One-dimensional Projectivities	
5.1	Superposed ranges	41
5.2	Parabolic projectivities	43
5.3	Involutions	45
5.4	Hyperbolic involutions	47
CHAPTER 6	Two-dimensional Projectivities	
6.1	Projective collineations	49
6.2	Perspective collineations	52
6.3	Involutory collineations	55
6.4	Projective correlations	57
CHAPTER 7	Polarities	
7.1	Conjugate points and conjugate lines	60
7.2	1 0	62
7.3	6	64
7.4	· ·	65
7.5	1 1 0	67
7.6	A self-conjugate quadrilateral	68
7.7	The product of two polarities	68
7.8	The self-polarity of the Desargues configuration	70
CHAPTER 8	The Conic	
8.1	How a hyperbolic polarity determines a conic	71
8.2	The polarity induced by a conic	75

8.3	Projectively related pencils	76
8.4	Conics touching two lines at given points	78
8.5	Steiner's definition for a conic	80

CHAPTER 9 The Conic, Continued

	9.1	The conic touching five given lines	81
	9.2	The conic through five given points	85
¢	9.3	Conics through four given points	87
	9.4	Two self-polar triangles	88
		Degenerate conics	89

CHAPTER 10 A Finite Projective Plane

1 0 .1	The idea of a finite geometry	91
10.2	A combinatorial scheme for $PG(2, 5)$	92
10.3	Verifying the axioms	95
10.4	Involutions	96
10.5	Collineations and correlations	97
10. 6	Conics	98

CHAPTER 11 Parallelism

11.1	Is the circle a conic?	102
11.2	Affine space	103
11.3	How two coplanar lines determine a flat pencil and a bundle	105
11.4	How two planes determine an axial pencil	106
11.5	The language of pencils and bundles	107
11.6	The plane at infinity	108
	Euclidean space	10 9

CHAPTER 12 Coordinates

12.1	The idea of analytic geometry	111
12.2	Definitions	112
12.3	Verifying the axioms for the projective plane	116
12.4	Projective collineations	119

,

12.	5 Polarities	122
12.	6 Conics	124
12.	7 The analytic geometry of $PG(2, 5)$	126
12.	8 Cartesian coordinates	129
12.	9 Planes of characteristic two	132
Answers to	Exercises	133
References		157
Index		159

.