

Richard Courant

Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces

Reprint

Springer-Verlag NewYork Heidelberg Berlin

AMS subject Classifications (1970): 49 F10, 30 A38, 31 B25, 3 A24

Reprint 1977

ISBN-13:978-1-4612-9919-6 e-ISBN-13:978-1-4612-9917-2 DOI: 10.1007/978-1-4612-9917-2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher

Reproduction in whole or in part permitted for any purpose of the United States Government

Copyright, 1950, by R. Courant Softcover reprint of the hardcover 1st edition 1950

NY/3014-543210

DIRICHLET'S PRINCIPLE, CONFORMAL MAPPING, AND MINIMAL SURFACES

R. COURANT

INSTITUTE FOR MATHEMATICS AND MECHANICS NEW YORK UNIVERSITY, NEW YORK

with an Appendix by M. SCHIFFER PRINCETON UNIVERSITY AND UNIVERSITY OF JERUSALEM

INTERSCIENCE PUBLISHERS, INC., NEW YORK INTERSCIENCE PUBLISHERS LTD., LONDON

To

Otto Neugebauer

Preface

It has always been a temptation for mathematicians to present the crystallized product of their thoughts as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods of more general significance.

The present book deals with subjects of this category. It is written in a style which, as the author hopes, expresses adequately the balance and tension between the individuality of mathematical objects and the generality of mathematical methods.

The author has been interested in Dirichlet's Principle and its various applications since his days as a student under David Hilbert. Plans for writing a book on these topics were revived when Jesse Douglas' work suggested to him a close connection between Dirichlet's Principle and basic problems concerning minimal surfaces. But war work and other duties intervened; even now, after much delay, the book appears in a much less polished and complete form than the author would have liked.

It was felt desirable to include a report on some recent progress in the theory of conformal mapping: fortunately Professor M. Schiffer, who had a most active part in those developments, agreed to write a summary of the material; the result is the comprehensive appendix which will certainly be considered as a highly valuable contribution to the volume.

In a field which has attracted so many mathematicians it is difficult to achieve a fair accounting of the literature and to appraise merits of others. I have tried to acknowledge all the sources of information and inspiration of which I am conscious, and I hope that not too many omissions have occurred.

A first draft of the book was completed eight years ago, supported by a grant from the Philosophical Society and with the help of

PREFACE

Dr. Wolfgang Wasow. Assistance for the present publication was partly provided under contract with the Office of Naval Research. On the scientific side the book owes much to Professor Max Shiffman, who has been concerned with the theory of minimal surfaces ever since a good fortune brought him as a student to my seminar on the subject. Carl Ludwig Siegel read the manuscript carefully and gave much valuable advice, Avron Douglis, Martin Kruskal, Peter Lax, Imanuel Marx, Joseph Massera, and others have unselfishly devoted time to scrutinizing the manuscript, reading proof, and preparing the bibliography. The drawings were made mainly by George Evans, Jr., Beulah Marx, and Irving Ritter. Edvthe Rodermund and Harriet Schoverling gave outstanding secretarial help. The strenuous responsibility for the editorial work and for the supervision of all the steps from preparing the manuscript to the final printing was in the competent hands of Natascha Artin. Without the collective help of all these friends the book could hardly have appeared at this time.

Naturally, a word of thanks must be added for the understanding and patient publisher whose interest has been most encouraging.

The book is dedicated to Otto Neugebauer as a token of friendship and admiration.

R. COURANT

New Rochelle, New York April 1950

Contents

	Preface	
	Introduction	1
I.	Dirichlet's Principle and the Boundary Value Problem of Potential Theory	5
	1. Dirichlet's Principle	5
	Definitions.	5
	Original statement of Dirichlet's Principle General objection: A variational problem need not be	6
	solvable	6
	Minimizing sequences. Explicit expression for Dirichlet's integral over a circle. Spe-	8
	cific objection to Dirichlet's Principle	9
	Correct formulation of Dirichlet's Principle	10
	2. Semicontinuity of Dirichlet's integral. Dirichlet's Principle for cir-	11
	cular disk	11
		13 16
	4. Further preparation Convergence of a sequence of harmonic functions	10
	Oscillation of functions appraised by Dirichlet's integral	18
	Invariance of Dirichlet's integral under conformal mapping.	
	Applications	20
	Dirichlet's Principle for a circle with partly free boundary	21
	5. Proof of Dirichlet's Principle for general domains	23
	Direct methods in the calculus of variations	23
	Construction of the harmonic function u by a "smoothing proc-	
	ess"	24
	Proof that $D[u] = d$	28
	Proof that u attains prescribed boundary values	28
	Generalizations	30
	6. Alternative proof of Dirichlet's Principle	31
	Fundamental integral inequality	31
	Solution of variational problem I	32
	7. Conformal mapping of simply and doubly connected domains	38
	8. Dirichlet's Principle for free boundary values. Natural boundary	
	conditions	40

II. Conformal Mapping on Parallel-Slit Domains	45
1. Introduction	45
Classes of normal domains. Parallel-slit domains	45
Variational problem: Motivation and formulation	48
2. Solution of variational problem II	
Construction of the function u	
Continuous dependence of the solution on the domain	54
3. Conformal mapping of plane domains on slit domains	
Mapping of k-fold connected domains	
Mapping on slit domains for domains G of infinite con	
nectivity	58
Half-plane slit domains. Moduli	
Boundary mapping	62
4. Riemann domains	64
	64
The "sewing theorem"	69
5. General Riemann domains. Uniformization	75
6. Riemann domains defined by non-overlapping cells	78
7. Conformal mapping of domains not of genus zero	80
Introduction	80
Description of slit domains not of genus zero	80
The mapping theorem	85
Remarks. Half-plane slit domains	92
III. Plateau's Problem 1. Introduction	
2. Formulation and solution of basic variational problems	
Notations	
Fundamental lemma. Solution of minimum problem	
Remarks. Semicontinuity	
3. Proof by conformal mapping that solution is a minimal surface	
4. First variation of Dirichlet's integral	
Variation in general space of admissible functions	
First variation in space of harmonic vectors	1107
Proof that stationary vectors represent minimal surfaces	119
5. Additional remarks	
Biunique correspondence of boundary points	
Relative minima	
Proof that solution of variational problem solves problem of	
least area	
Role of conformal mapping in solution of Plateau's problem	
6. Unsolved problems	
Analytic extension of minimal surfaces	
Uniqueness. Boundaries spanning infinitely many minimal	
surfaces	
Sullaves	119
Branch points of minimal surfaces	119 1 22

viii

III.	Plateau's Problem—Continued	
	 First variation and method of descent. Dependence of area on boundary. Continuity theorem for absolute minima. Lengths of images of concentric circles. Isoperimetric inequality for minimal surfaces. Continuous variation of area of minimal surfaces. Continuous variation of area of harmonic surfaces. 	126 126 127 129 131
IV.	The General Problem of Douglas	141
	1. Introduction	141
	2. Solution of variational problem for k-fold connected domains	
	Formulation of problem	
	Condition of cohesion	
	Solution of variational problem for k-fold connected domains	
	G and parameter domains bounded by circles	146
	Solution of variational problem for other classes of normal do-	
	mains	
	3. Further discussion of solution	
	Douglas' sufficient condition	
	Lemma 4.1 and proof of theorem 4.2.	
	Lemma 4.2 and proof of theorem 4.1	
	Remarks and examples.	
	4. Generalization to higher topological structure Existence of solution	
	Proof for topological type of Moebius strip	
	Other types of parameter domains	
	Identification of solutions as minimal surfaces. Properties of	101
	solution	165
V.	. Conformal Mapping of Multiply Connected Domains	167
	1. Introduction	
	Objective	
	First variation	
	2. Conformal mapping on circular domains	
	Statement of theorem	
	Statement and discussion of variational conditions	
	Proof of variational conditions	
	Proof that $\Phi(w) = 0$	
	3. Mapping theorems for a general class of normal domains	
	Formulation of theorem	
	Proof that $\Phi(w) = 0$	
	4. Conformal mapping on Riemann surfaces bounded by unit circles	183
	Formulation of theorem	183

V. Conformal Mapping of Multiply Connected Domains-Continued	
Variational conditions. Variation of branchpoints	184
Proof that $\Phi(w) = 0$	
5. Uniqueness theorems	
Method of uniqueness proof	
Uniqueness for Riemann surfaces with branch points	
Uniqueness for classes N of plane domains	
Uniqueness for other classes of domains	
6. Supplementary remarks	
First continuity theorem in conformal mapping Second continuity theorem. Extension of previous mapping	
theorems Further observations on conformal mapping	
7. Existence of solution for variational problem in two dimensions	
Proof using conformal mapping of doubly connected domains	
Alternative proof. Supplementary remarks	
VI. Minimal Surfaces with Free Boundaries and Unstable Minimal Sur-	
faces	199
1. Introduction	
Free boundary problems	
Unstable minimal surfaces	
2. Free boundaries. Preparations	
General remarks	
A theorem on boundary values	
3. Minimal surfaces with partly free boundaries	
Only one arc fixed Remarks on Schwarz' chains	
Doubly connected minimal surfaces with one free boundary	
Multiply connected minimal surfaces with free boundaries	
4. Minimal surfaces spanning closed manifolds	
Introduction	
Existence proof	
5. Properties of the free boundary. Transversality	
Plane boundary surface. Reflection	
Surface of least area whose free boundary is not a continuous	
curve	220
Transversality	222
6. Unstable minimal surfaces with prescribed polygonal boundaries	
Unstable stationary points for functions of N variables	
A modified variational problem	
Proof that stationary values of $d(U)$ are stationary values for	
D[t]	
Generalization	
Remarks on a variant of the problem and on second variation	
7. Unstable minimal surfaces in rectifiable contours	236

х

	al Surfaces with Free Boundaries and Unstable Minimal Sur- Continued			
8. Cor	Preparations. Main theorem. Remarks and generalizations. atinuity of Dirichlet's integral under transformation of r-space.	240		
Bibliography, Chapters I to VI 2				
Appendix.	Some Recent Developments in the Theory of Conformal Mapping. By M. SCHIFFER	249		
	 Green's function and boundary value problems Canonical conformal mappings Boundary value problems of second type and Neu- mann's function 	253		
	2. Dirichlet integrals for harmonic functions Formal remarks The kernels K and L	266 266		
	Inequalities Conformal transformations An application to the theory of univalent functions	273 275 276		
	Discontinuities of the kernels An eigenvalue problem Kernel functions for the class \mathfrak{F}_0 Comparison theory	278 281 283		
	An extremum problem in conformal mapping Mapping onto a circular domain Orthornormal systems	290		
	3. Variation of the Green's function	292 292		
	Application to the coefficient problem for univalent functions	300		
	Boundary variations Lavrentieff's method Method of extremal length	310		
	Concluding remarks			
	hy to Appendix			
Supplemen	tary Notes (1977)	331		