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Preface 

It has always been a temptation for mathematicians to present the 
crystallized product of their thoughts as a deductive general theory 
and to relegate the individual mathematical phenomenon into the 
role of an example. The reader who submits to the dogmatic form 
will be easily indoctrinated. Enlightenment, however, must come 
from an understanding of motives; live mathematical development 
springs from specific natural problems which can be easily understood, 
but whose solutions are difficult and demand new methods of more 
general significance. 

The present book deals with subjects of this category. It is written 
in a style which, as the author hopes, expresses adequately the balance 
and tension between the individuality of mathematical objects and 
the generality of mathematical methods. 

The author has been interested in Dirichlet's Principle and its 
various applications since his days as a student under David Hilbert. 
Plans for writing a book on these topics were revived when Jesse 
Douglas' work suggested to him a close connection between 
Dirichlet's Principle and basic problems concerning minimal sur­
faces. But war work and other duties intervened; even now, after 
much delay, the book appears in a much less polished and complete 
form than the author would have liked. 

It was felt desirable to include a report on some recent progress 
in the theory of conformal mapping: fortunately Professor M. Schiffer, 
who had a most active part in those developments, agreed to write a 
summary of the material; the result is the comprehensive appendix 
which will certainly be considered as a highly valuable contribution 
to the volume. 

In a field which has attracted so many mathematicians it is difficult 
to achieve a fair accounting of the literature and to appraise merits of 
others. I have tried to acknowledge all the sources of information and 
inspiration of which I am conscious, and I hope that not too many 
omissions have occurred. 

A first draft of the book was completed eight years ago, supported 
by a grant from the Philosophical Society and with the help of 
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Dr. Wolfgang Wasow. Assistance for the present publication was 
partly provided under contract with the Office of Naval Research. 
On the scientific side the book owes much to Professor Max Shiffman, 
who has been concerned with the theory of minimal surfaces ever 
since a good fortune brought him as a student to my seminar on the 
subject. Carl Ludwig Siegel read the manuscript carefully and gave 
much valuable advice. Avron Douglis, Martin Kruskal, Peter Lax, 
Imanuel Marx, Joseph Massera, and others have unselfishly devoted 
time to scrutinizing the manuscript, reading proof, and preparing the 
bibliography. The drawings were made mainly by George Evans, Jr., 
Beulah Marx, and Irving Ritter. Edythe Rodermund and Harriet 
Schoverling gave outstanding secretarial help. The strenuous re­
sponsibility for the editorial work and for the supervision of all the 
steps from preparing the manuscript to the final printing was in the 
competent hands of N atascha Artin. Without the collective help of 
all these friends the book could hardly have appeared at this time. 

Naturally, a word of thanks must be added for the understanding 
and patient publisher whose interest has been most encouraging. 

The book is dedicated to Otto Neugebauer as a token of friendship 
and admiration. 

New Rochelle, N ew York 
Apn:11950 

R. COURANT 



Contents 

Preface ............................................................. vi 

Introduction. 

I. Dirichlet's Principle and the Boundary Value Problem of Potential 
Theory.. . .................... . 

1. Dirichlet's Principle ..... . 
Definitions .............. . 
Original statement of Dirichlet's Principle ............ . 
General objection: A variational problem need not be 

solvable..... . . ................... , ................... . 
1£nimizing sequences ...................................... . 
Explicit expression for Dirichlet's integral over a circle. Spe-

cific objection to Dirichlet's Principle ................ . 
Correct formulation of Dirichlet's Principle ........ . 

2. Semicontinuity of Dirichlet's integral. Dirichlet's Principle for cir-
cular disk... . ..................................... . 

3. Dirichlet's integral and quadratic functionals ........ . 
4. Further preparation ................................ . 

Convergence of a sequence of harmonic functions. 
Oscillation of functions appraised by Dirichlet's integral. ..... . 
Invariance of Dirichlet's integral under conformal mapping. 

Applications. . . . . . . . . . . . . . . . . . . . . . . . . . ........... . 
Dirichlet's Principle for a circle with partly free boundary .... . 

5. Proof of Dirichlet's Principle for general domains ..... . 
Direct methods in the calculus of variations ................ . 
Construction of the harmonic function u by a "smoothing proc-

ess" . ...... . 

Proof that D[ul = d .......... . 

5 

5 
5 
6 

6 
8 

9 
10 

11 
13 
16 
16 
18 

20 
21 
23 
23 

24 
28 

Proof that u attains prescribed boundary values. 28 
Generalizations ....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

6. Alternative proof of Dirichlet's Principle ............ " . . . . . . 31 
Fundamental integral inequality.. .......................... 31 
Solution of variational problem 1. .. , . . . . . . . . . . . . . . . . . . . . . . .. 32 

7. Conformal mapping of simply and doubly connected domains. . .. 38 
8. Dirichlet's Principle for free boundary values. Natural boundary 

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 

vii 



viii CONTEN'l'S 

II. Conformal Mapping on Parallel.Slit Domains ...................... . 

1. Introduction......................................... . . . . . . . . . .. 45 
Classes of normal domains. Parallel-slit domains.. . . . . . . . . . .. 45 
Variational problem: Motivation and formulation ............. . 

2. Solution of variational problem n .............................. . 
Construction of the function u . ............................. . 
Continuous dependence of the solution on the domain ...... . 

3. Conformal mapping of plane domains on slit domains ..... . 
Mapping of k-fold connected domains ......... . 
Mapping on slit domains for domains G of infinite con-

nectivity ..................... '" ......................... . 
Half-plane slit domains. Moduli ............................. . 
Boundary mapping......... . . . . . . . . . . . ....... . 

4. Riemann domains .................. . 
Introduction ...................... . 

48 
51 
51 
54 
55 
56 

58 
61 
62 
64 
64 

The "sewing theorem" . . . . . . . . . . . . . 69 
5. General Riemann domains. Uniformization....................... 75 
6. Riemann domains defined by non-overlapping cells. . . . . . . . . . . . . .. 78 
7. Conformal mapping of domains not of genus zero. . . . . . . . . . . . . . . .. 80 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
Description of slit domains not of genus zero ........ . 
The mapping theorem.. . . . . . . .. . . . . .. .. .. . . ......... . 
Remarks. Half-plane slit domains ....................... . 

III. Plateau's Problem. 

1. Introduction ............................................. . 
2. Formulation and solution of basic variational problems ......... . 

Notations .................................................. . 
Fundamental lemma. Solution of minimum problem ..... . 
Remarks. Semicontinuity ........ " ..... , ........ '" .. 

3. Proof by conformal mapping that solution is a minimal surface ..... . 
4. First variation of Dirichlet's integral. ....................... . 

Variation in general space of admissible functions ... . 
First variation in space of harmonic vectors .............. . 
Proof that stationary vectors represent minimal surfaces .... . 

5. Additional remarks ............................................. . 

80 
85 
92 

95 

95 
101 
101 
101 
104 
105 
107 
107 
110 
112 
115 

Biunique correspondence of boundary points ................. 115 
Relative minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115 
Proof that solution of variational problem solves problem of 

least area ................................................. 116 
Role of conformal mapping in solution of Plateau's problem. .. 117 

6. Unsolved problems .............................................. 118 
Analytic extension of minimal surfaces ....................... 118 
Uniqueness. Boundaries spanning infinitely many minimal 

surfaces .................................................. 119 
Branch points of minimal surfaces ........................... 122 



CONTENTS 

III. Plateau'g Problem-Continued 

7. First variation and method of descent .......................... . 
8. Dependence of area on boundary .................. , ............. . 

Continuity theorem for absolute minima .................... . 
Lengths of images of concentric circles ..................... . 
Isoperimetric inequality for minimal surfaces ............... . 
Continuous variation of area of minimal surfaces ........... . 
Continuous variation of area of harmonic surfaces .......... . 

IV. The General Problem of Douglas .............. , .................. . 

1. Introduction ................................................. . 
2. Solution of variational problem for k-fold connected domains ... . 

Formulation of problem ......................... , .......... . 
Condition of cohesion ....................................... . 
Solution of variational problem for k-fold connected domains 

ix 

123 
126 
126 
127 
129 
131 
134 

141 

141 
144 
144 
145 

G and parameter domains bounded by circles ................ 146 
Solution of variational problem for other classes of normal do-

mains ..................................................... 149 
3. Further discussion of solution ................................. '" 149 

Douglas' sufficient condition ...... , .......................... 149 
Lemma 4.1 and proof of theorem 4.2 ............. , ........... 151 
Lemma 4.2 and proof of theorem 4.1. . . . . . . . . . . . . . . . . 153 
Remarks and examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 158 

4. Generalization to higher topological structure. . . . . . . . . . . . . . . . . .. 160 
Existence of solution ........................................ 160 
Proof for topological type of Moebius strip ................... 161 
Other types of parameter domains ............... , ........... 164 
Identification of solutions as minimal surfaces. Properties of 

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 

V. Conformal Mapping of Multiply Connected Domains ............. . 167 

1. Introduction................................................... 167 
Objective .................................................... 167 
First variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 168 

2. Conformal mapping on circular domains ......................... 169 
Statement of theorem ........................................ 169 
Statement and discussion of variational conditions... . . . . . . .. 169 
Proof of variational conditions .............................. 171 
Proof that <p(w) = 0 ........................................ 175 

3. Mapping theorems for a general class of normal domains ......... 178 
Formulation of theorem ..................................... 178 
Variational conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179 
Proof that <p(w) = o ........................................ 180 

4. Conformal mapping on Riemann surfaces bounded by unit circles ... 183 
Formulation of theorem ..................................... 183 



x CONTENTS 

V. Conformal Mapping of Multiply Connected Domains-Continued 

Variational conditions. Variation of branchpoints.... . . . 184 
Proof that <I>(w) = o. . . . . . . . . . . . . . . 186 

5. Uniqueness theorems. . . . 187 
Method of uniqueness proof.. 187 
Uniqueness for Riemann surfaces with branch points.... 188 
Uniqueness for classes In of plane domains... . . 188 
Uniqueness for other classes of domains...... . . . . . . . . . . 190 

6. Supplementary remarks. . . . . . . .. . . . . . . . . . . . . . . . . . . 191 
First continuity theorem in conformal mapping.. . . . . 191 
Second continuity theorem. Extension of previous mapping 

theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
Further observations on conformal mapping. . . . . . 192 

7. Existence of solution for variational problem in two dimensions. . 192 
Proof using conformal mapping of doubly connected domains. .. 192 
Alternative proof. Supplementary remarks. 197 

VI. Minimal Surfaces with Free Boundaries and Unstable Minimal Sur-
faces ......... 

1. Introduction .................. . 
Free boundary problems..... . ....... . 
Unstable minimal surfaces ........ . 

2. Free boundaries. Preparations ..... . 
General remarks ........ . 
A theorem on boundary values. 

3. Minimal surfaces with partly free boundaries .. . 
Only one arc fixed. . ............. . 
Remarks on Schwarz' chains..... . . . . .............. . 
Doubly connected minimal surfaces with one free boundary ... . 
Multiply connected minimal surfaces with free boundaries .... . 

4. Minimal surfaces spanning closed manifolds. . .......... . 
Introduction ..... 
Existence proof .... 

5. Properties of the free boundary. Transversality .. 
Plane boundary surface. Reflection ............ . 
Surface of least area whose free boundary is not a continuous 

199 

199 
199 
200 
201 
201 
202 
206 
206 
208 
209 
211 
213 
213 
214 
218 
218 

curve... . . .......................................... 220 
Transversality. . . . . . . ........................ 222 

6. Unstable minimal surfaces with prescribed polygonal boundaries ... 223 
Unstable stationary points for functions of N variables ........ 223 
A modified variational problem .............................. 226 
Proof that stationary values of d(U) are stationary values for 

DW....... . ............................. m 
Generalization. . . . . . . . . . . 233 
Remarks on a variant of the problem and on second variation ... 235 

7. Unstable minimal surfaces in rectifiable contours. . . . . . . 236 



CONTENTS 

VI. Minimal Surfaces with Free Boundaries and Unstable Minimal Sur­
faces-Continued 

xi 

Preparations. Main theorem. . . . . . . . . . 236 
Remarks and generalizations. . . . . . . . . . . .. . ............. 240 

8. Continuity of Dirichlet's integral under transformation of r-space .. 241 

Bibliography, Chapters I to VI. ..... . 245 

Appendix. Some Recent Developments in the Theory of Conformal 
Mapping. By M. SCHIFFER. . . . . . . . . . . . . . . . . . . 249 

1. Green's function and boundary value problems .......... . 
Canonical conformal mappings ...................... . 
Boundary value problems of second type and Neu-

mann's function. ... . . . . . . .................... . 
2. Dirichlet integrals for harmonic functions .. 

Formal remarks ....... . 
The kernels K and L. . ....... . 
Inequalities ................. . 
Conformal transformations .. . 
An application to the theory of univalent functions .. . 
Discontinuities of the kernels. . . . ......... . 
An eigenvalue problem. . . . . . ......... . 
Kernel functions for the class \50. . . ......... . 
Comparison theory ................................. . 
An extremum problem in conformal mapping ........ . 
Mapping onto a circular domain. . ........... . 
Orthornormal systems .... 

3. Variation of the Green's- function .. . 
Hadamard's variation formula ... . 
Interior variations... . . ....... . 
Application to the coefficient problem for univalent 

functions.. . . . . ...................... . 
Boundary variations... . . ....... " .......... . 
Lavrentieff's method.. .. . . . . . ................. . 
Method of extremal length. . . ......... . 
Concluding remarks. . . . . . . . . ............... . 

Bibliography to Appendix ...... . 

Index .................... . 

249 
253 

259 
266 
266 
268 
273 
275 
276 
277 
278 
281 
283 
289 
290 
291 
292 
292 
298 

300 
306 
310 
313 
317 

319 

325 

Supplementary Notes (1977) ............................................ 331 


