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Preface 

This volume is the result of a (mainly) instructional conference on arithmetic 
geometry, held from July 30 through August 10, 1984 at the University of 
Connecticut in Storrs. This volume contains expanded versions of almost all 
the instructional lectures given during the conference. In addition to these 
expository lectures, this volume contains a translation into English of Falt­
ings' seminal paper which provided the inspiration for the conference. We 
thank Professor Faltings for his permission to publish the translation and 
Edward Shipz who did the translation. 

We thank all the people who spoke at the Storrs conference, both for 
helping to make it a successful meeting and enabling us to publish this 
volume. We would especially like to thank David Rohrlich, who delivered 
the lectures on height functions (Chapter VI) when the second editor was 
unavoidably detained. In addition to the editors, Michael Artin and John 
Tate served on the organizing committee for the conference and much of the 
success of the conference was due to them-our thanks go to them for their 
assistance. 

Finally, the conference was only made possible through generous grants 
from the Vaughn Foundation and the National Science Foundation. 

December, 1985 G. Cornell 
J. H. Silverman 
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Introduction 

The chapters of this book, with the exception of Chapters II, XI and XII, are 
expanded versions of the lectures given at the Storrs Conference. They are 
intended, as was the conference, to introduce many of the ideas and tech­
niques currently being used in arithmetic geometry; and in particular to ex­
plicate the tools used by Faltings in his proof of the Isogeny, Shafarevich and 
Mordell conjectures. 

The first chapter is a brief overview, by Faltings himself, of the history 
leading up to the proof of the Mordell conjecture, and the second is a 
translation from the German of Faltings' paper in which he proved all three 
conjectures. The heart of this book, Chapters III through IX, contain (with 
varying amounts of detail) all of the results used in Faltings' paper. In par­
ticular, there is a thorough treatment of finite group schemes and p-divisible 
groups (Chapter III), Abelian and Jacobian varieties and schemes (Chapters 
IV, V, VII and VIII), their moduli spaces (Chapter IX) and height functions 
(Chapter VI). The prerequisites vary for each chapter, but in general, little is 
needed beyond what would normally be covered in one-year graduate courses 
in algebraic number theory and algebraic geometry. 

After a brief chapter to illustrate the general theory for the particular case 
of elliptic curves (Chapter X), there are four chapters devoted to the theory of 
local height functions and arithmetic (Arakelov) intersection theory. Finally, 
Chapter XV contains an exposition ofVojta's far-reaching conjecture, whose 
consequences would include many of the standard finiteness theorems and 
outstanding conjectures in arithmetic geometry. 

The editors hope that this volume will provide a path into the forest that 
is modern arithmetic geometry, wherein you will discover the beautiful flow­
ers that blossom when arithmetic and geometry are intertwined, and there 
perchance, discover some new, exotic species heretofore unknown to the 
world of mathematics. 


