Introduction to Algorithms

second edition

Thomas H. Cormen, Dartmouth College Charles E. Leiserson, Massachusetts Institute of Technology Ronald L. Rivest, Massachusetts Institute of Technology Clifford Stein, Columbia University

Table of Contents

Preface

I Foundations

- 1 The Role of Algorithms in Computing
- 1.1 Algorithms
- 1.2 Algorithms as a technology

2 Getting Started

- 2.1 Insertion sort
- 2.2 Analyzing algorithms
- 2.3 Designing Algorithms
- 3 Growth of Functions
- 3.1 Asymptotic notation
- 3.2 Standard notations and common functions
- 4 Recurrences
- 4.1 The substitution method
- 4.2 The recursion-tree method
- 4.3 The master method
- 4.4 Proof of the master theorem
- 5 Probabilistic Analysis and Randomized Algorithms
- 5.1 The hiring problem
- 5.2 Indicator random variables
- 5.3 Randomized algorithms
- 5.4 Probabilistic analysis and further uses of indicator random variables

II Sorting and Order Statistics

- 6 Heapsort
- 6.1 Heaps
- 6.2 Maintaining the heap property
- 6.3 Building a heap
- 6.4 The heapsort algorithm
- 6.5 Priority queues
- 7 Quicksort
- 7.1 Description of quicksort
- 7.2 Performance of quicksort
- 7.3 Randomized versions of quicksort
- 7.4 Analysis of quicksort
- 8 Sorting in Linear Time
- 8.1 Lower bounds for sorting
- 8.2 Counting sort
- 8.3 Radix sort
- 8.4 Bucket sort
- 9 Medians and Order Statistics
- 9.1 Minimum and maximum
- 9.2 Selection in expected linear time
- 9.3 Selection in worst-case linear time
- **III** Data Structures

- 10 Elementary Data Structures
- 10.1 Stacks and queues
- 10.2 Linked lists
- 10.3 Implementing pointers and objects
- 10.4 Representing rooted trees
- 11 Hash Tables
- 11.1 Direct-address tables
- 11.2 Hash tables
- 11.3 Hash functions
- 11.4 Open addressing
- 11.5 Perfect hashing
- 12 Binary Search Trees
- 12.1 What is a binary search tree?
- 12.2 Querying a binary search tree
- 12.3 Insertion and deletion
- 12.4 Randomly built binary search trees
- 13 Red-Black Trees
- 13.1 Properties of red-black trees
- 13.2 Rotations
- 13.3 Insertion
- 13.4 Deletion
- 14 Augmenting Data Structures
- 14.1 Dynamic order statistics
- 14.2 How to augment a data structure
- 14.3 Interval trees

IV Advanced Design and Analysis Technique

- 15 Dynamic Programming
- 15.1 Assembly-line scheduling
- 15.2 Matrix-chain multiplication
- 15.3 Elements of dynamic programming
- 15.4 Longest common subsequence
- 15.5 Optimal binary search trees

16 Greedy Algorithms

- 16.1 An activity-selection problem
- 16.2 Elements of the greedy strategy
- 16.3 Huffman codes
- 16.4 Theoretical foundations for greedy methods
- 16.5 A task-scheduling problem

17 Amortized Analysis

- 17.1 Aggregate analysis
- 17.2 The accounting method
- 17.3 The potential method
- 17.4 Dynamic tables

V Advanced Data Structures

18 B-Trees

- 18.1 Definition of B-trees
- 18.2 Basic operations on B-trees
- 18.3 Deleting a key from a B-tree

19 Binomial Heaps

- 19.1 Binomial trees and binomial heaps
- 19.2 Operations on binomial heaps
- 20 Fibonacci Heaps
- 20.1 Structure of Fibonacci heaps
- 20.2 Mergeable-heap operations
- 20.3 Decreasing a key and deleting a node
- 20.4 Bounding the maximum degree
- 21 Data Structures for Disjoint Sets
- 21.1 Disjoint-set operations
- 21.2 Linked-list representation of disjoint sets
- 21.3 Disjoint-set forests
- 21.4 Analysis of union by rank with path compression

VI Graph Algorithms

- 22 Elementary Graph Algorithms
- 22.1 Representations of graphs
- 22.2 Breadth-first search
- 22.3 Depth-first search
- 22.4 Topological sort
- 22.5 Strongly connected components
- 23 Minimum Spanning Trees
- 23.1 Growing a minimum spanning tree
- 23.2 The algorithms of Kruskal and Prim
- 24 Single-Source Shortest Paths
- 24.1 The Bellman-Ford algorithm
- 24.2 Single-source shortest paths in directed acyclic graphs
- 24.3 Dijkstra's algorithm
- 24.4 Difference constraints and shortest paths
- 24.5 Proofs of shortest-paths properties
- 25 All-Pairs Shortest Paths
- 25.1 Shortest paths and matrix multiplication
- 25.2 The Floyd-Warshall algorithm
- 25.3 Johnson's algorithm for sparse graphs
- 26 Maximum Flow
- 26.1 Flow networks
- 26.2 The Ford-Fulkerson method
- 26.3 Maximum bipartite matching
- 26.4 Push-relabel algorithms
- 26.5 The relabel-to-front algorithm

VII Selected Topics

- 27 Sorting Networks
- 27.1 Comparison networks
- 27.2 The zero-one principle
- 27.3 A bitonic sorting network
- 27.4 A merging network

27.5 A sorting network

28 Matrix Operations

- 28.1 Properties of matrices
- 28.2 Strassen's algorithm for matrix multiplication
- 28.3 Solving systems of linear equations
- 28.4 Inverting matrices
- 28.5 Symmetric positive-definite matrices and least-squares approximation

29 Linear Programming

- 29.1 Standard and slack forms
- 29.2 Formulating problems as linear programs
- 29.3 The simplex algorithm
- 29.4 Duality
- 29.5 The initial basic feasible solution
- 30 Polynomials and the FFT
- 30.1 Representation of polynomials
- 30.2 The DFT and FFT
- 30.3 Efficient FFT implementations
- 31 Number-Theoretic Algorithms
- 31.1 Elementary number-theoretic notions
- 31.2 Greatest common divisor
- 31.3 Modular arithmetic
- 31.4 Solving modular linear equations
- 31.5 The Chinese remainder theorem
- 31.6 Powers of an element
- 31.7 The RSA public-key cryptosystem
- 31.8 Primality testing
- 31.9 Integer factorization
- 32 String Matching
- 32.1 The naive string-matching algorithm
- 32.2 The Rabin-Karp algorithm
- 32.3 String matching with finite automata
- 32.4 The Knuth-Morris-Pratt algorithm
- 33 Computational Geometry
- 33.1 Line-segment properties
- 33.2 Determining whether any pair of segments intersects
- 33.3 Finding the convex hull
- 33.4 Finding the closest pair of points
- 34 NP-Completeness
- 34.1 Polynomial time
- 34.2 Polynomial-time verification
- 34.3 NP-completeness and reducibility
- 34.4 NP-completeness proofs
- 34.5 NP-complete problems
- 35 Approximation Algorithms

- 35.1 The vertex-cover problem35.2 The traveling-salesman problem35.3 The set-covering problem35.4 Randomization and linear programming
- 35.4 The subset-sum problem

VIII Appendix: Mathematical Background

A Summations

A.1 Summation formulas and properties A.2 Bounding summations

B Sets, Etc.

B.1 Sets

B.2 Relations

B.3 Functions

B.4 Graphs

B.5 Trees

C Counting and Probability

C.1 Counting

- C.2 Probability
- C.3 Discrete random variables
- C.4 The geometric and binomial distributions

C.5 The tails of the binomial distribution

Bibliography Index (created by the authors)