Topological Dynamics of Random Dynamical Systems

NGUYEN DINH CONG

Institute for Dynamical Systems University of Bremen

CONTENTS

.

٠

Introduction		
1	Deterministic dynamical systems	5
1.1	Introduction	5
1.2	Equivalent dynamical systems	6
1.3	Structural stability and linearization	. 8
1.4	Classification	18
1.5	Other problems and discussion	20
2	Random dynamical systems: foundations	22
2.1	Introduction	22
2.2	The generation of random dynamical systems	25
	2.2.1 Products of random mappings	25
	2.2.2 Random differential equations	26
	2.2.3 Stochastic differential equations	28
	2.2.4 Local random dynamical systems	29
2.3	The multiplicative ergodic theorem of Oseledets	30
2.4	Lyapunov scalar products and Lyapunov norms	32
2.5	Some applications of random dynamical systems	41
	2.5.1 Random Schrödinger operators	41
	2.5.2 The noisy Duffing-van der Pol oscillator	42
	2.5.3 Structural dynamics in engineering	42
	2.5.4 Population dynamics in biology	44
3	The linearization of nonlinear random dynamical	
	systems	46
3.1	Topological conjugacy of random dynamical systems	46
3.2	Exponential dichotomy	49
3.3	Random difference equations	50
3.4	The random Hartman–Grobman theorem	61
3.5	Bifurcation theory	80
4	Topological classification of discrete-time linear hy-	
	perbolic cocycles	84
4.1	Introduction	84
4.2	Topological classification of periodic cocycles	87
4.3	Necessary conditions for topological conjugacy	92
4.4	Structural stability of contracting linear cocycles	100
4.5	Diagonalization of linear cocycles	104

CONTENTS

4.6	Classification of one-dimensional linear hyperbolic cocy-	
	cles	110
4.7	Classification of linear hyperbolic diagonal cocycles	112
4.8	A classification theorem	117
5	Structural stability of discrete-time linear hyper-	
	bolic cocycles	121
5.1	Introduction	121
5.2	Exponential dichotomy of a linear cocycle with respect to	
	a random norm	122
5.3	Structural stability of a linear cocycle having an exponen-	
	tial dichotomy	123
5.4	Structural stability of linear hyperbolic cocycles	128
5.5	Applications	130
6	Structural stability of continuous-time linear hyper-	
	bolic cocycles	132
6.1	Introduction	132
6.2	Uniformly contracting and expanding cocycles	133
6.3	Non-uniformly contracting and expanding linear cocycles	136
6.4	Structural stability	141
6.5	Application: the stability of deterministic hyperbolic sys-	
	tems under small random noise	147
7	Topological classification of continuous-time linear	
	hyperbolic cocycles	150
7.1	Introduction	150
7.2	Necessary conditions for topological conjugacy	151
7.3	Some orientation properties of linear hyperbolic cocycles	154
7.4	Topological classification	170
8	Topological invariants of linear cocycles	176
8.1	Introduction	176
8.2	Stable and unstable subspaces are topological invariants	177
8.3	When is the center subspace invariant?	186
Bibliography		190
Index		201

viii