
Lecture Notes in Mathematics
Editors:
A. Dold, Heidelberg
B. Eckmann, ZUrich
F. Takens, Groningen

1532



Jean Francois Colombeau

Multiplication
of Distributions
A tool in mathematics, numerical engineering
and theoretical physics

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest



Author

Jean Francois Colombeau
Ecole Normale Superieure de Lyon
46 Allee d'Italie
F-69364 Lyon Cedex 07, France

Mathematics Subject Classification (1991): mHOS, 26E35, 30G99, 35A40, 35D05,
35L60,35R05,46FI0,65M05, 73D05, 76L05, 76T05

ISBN 3-540-56288-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56288-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
46/3140-543210 - Printed on acid-free paper



Introduction

The aim of this book is to present a recent mathematical tool, in a way which is very

accessible and free from mathematical techniques. The presentation developed here is in part

heuristic, with emphasis on algebraic calculations and numerical recipes that can be easily used for

numerical solutions of systems of equations modelling elasticity, elastoplasticity, hydrodynamics,

acoustic diffusion, multifluid flows. This mathematical tool has also theoretical consequences such as

convergence proofs for numerical schemes, existence - uniqueness theorems for solutions of systems

of partial differential equations, unification of various methods for defining multiplications of

distributions. These topics are not developed in this book since this would have made it not so

elementary. A glimpse on these topics is given in two recent research expository papers: Colombeau

[14] in Bull. of A.M.S. and Egorov [1] in Russian Math. Surveys. A detailed and careful self

contained exposition on these mathematical applications can be found in Oberguggenberger's recent

book [11] "Multiplication of distributions and applications to partial differential equations". A set of

references is given concerning both the applied and the theoretical viewpoints. This book is the text of

a course in numerical modelling given by the author to graduate students at the Ecole Normale

Superieure de Lyon in the academic years 1989 - 90 and 1990 91.

Many basic equations of physics contain, in more or less obvious or hidden ways, products

looking like "ambiguous multiplications of distributions" such as products of a discontinuous

function f and a Dirac mass centered on a point of discontinuity of f or powers of a Dirac mass. These

products do not make sense within classical mathematics (i. e. distribution theory) and usually appear

as "ambiguous" when considered from a heuristic or physical viewpoint. The idea developed here is

that these statements of equations of physics are basically sound, and that a new mathematical theory

of generalized functions is needed to explain and master them. Such a theory was first developed in

pure mathematics and then it was used in applications; the mathematician reader can look at the books

Colombeau [2,3 ], Part II of Rosinger [ 1], Biagioni [ 1] and Oberguggenberger [11].

The ambiguity appearing in equations of physics when these equations involve "heuristic

multiplications of distributions" corresponds in our theory to the fact that, when formulated in the

weakest way, these equations have an infinite number of possible solutions. This recognition of

infinitely many solutions was essentially known and understood without our theory (at least in

Quantum Field Theory). To resolve the ambiguities our new setting can suggest more precise

formulations of the equations (these more precise formulations do not make sense within distribution

theory). On physical ground one chooses one of these more precise formulations in which there is no

more ambiguity. This technique is developed in this book on various examples from physics. This

gives directly new algebraic formulas and new numerical schemes. When one has algebraic jump
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formulas (for systems in nonconservation form) then it is an easy further step to transfer this

knowledge into numerical schemes of the Godunov type. This last numerical technique - Godunov

schemes for systems in nonconservation form (elastoplasticity, multifluid flows) or for

nonconservative versions of systems of conservation laws (hydrodynamics) - is the main application

developed in this text (chapters 4 and 5).

The book is divided into four parts. Part I (chapters I and 2) deals with preliminaries from

mathematics and physics. Part II (chapter 3 ) is a smooth introduction to our theory of generalized

functions. Part III (chapters 4, 5, 6) is the main part : there new numerical methods are developed ;

for simplicity most of them are presented on one dimensional models, but they extend to the 2 and 3

dimensional problems of industrial use or physical significance; numerical results are presented and

references are given. Part IV is made of various complements.

Now let us describe briefly the contents of each chapter. In chapter 1 we introduce our

viewpoint. distribution theory and its limitations, in a way convenient for a reader only aware of the

concepts of partial derivatives (of functions of several real variables) and of integrals (of continuous

functions). Chapter 2 exposes the main equations of Continuum Mechanics considered in the book

(hydrodynamics, elastoplasticity, multifluid flows, linear acoustics). The aim of chapter 3 is to

describe this new mathematical tool without giving the precise mathematical definitions : the

viewpoint there is that these generalized functions can be manipulated correctly provided one has an

intuitive understanding of them and provided one is familiar with their rules of calculation. Chapter 4

deals with the classical (conservative) system of fluid dynamics. No products of distributions appear

in it, even in case of shock waves. But, surprisingly, our tool gives new methods for its numerical

solution : one transforms it into a simpler, but in nonconservative form, system and then one

computes a solution from nonconservative Godunov type schemes. In this case, since the correct

solution is known with arbitrary precision it is easy to evaluate the value of the new method (by

comparison with the exact solution and with numerical results from classical conservative numerical

methods). Chapters 5 and 6 deal with systems containing multiplications of distributions that arise

directly from physics : nonlinear systems of elastoplasticity and multifluid flows in chapter 5 and

linear systems of acoustics in chapter 6. In chapter 7 we expose in the case of a simple model (a self

interacting boson field) the basic heuristic calculations of Quantum Field Theory. This topic has been

chosen since Quantum Field Theory is the most famous historic example in which the importance of

multiplications of distributions was first recognized. Chapter 8 contains a mathematical introduction

to these generalized functions and mathematical definitions.

I am particularly indebted to A. Y. Le Roux and B. Poiree. I was working on the

multiplication of distributions from a viewpoint of pure mathematics when we met. Their research

work (numerical analysis and engineering, physics) had shown them the need of a multiplication of
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distributions. They introduced me kindly and smoothly to their problems. This was the origin of the

present book. I am also very much indebted to L. Arnaud, F. Berger, H. A. Biagioni, L.S. Chadli,

P. De Luca, J. Laurens, A. Noussair, M. Oberguggenberger, B. Perrot, I. Zalzali for help in works

used in the preparation of this book. The main part of the typing has been done by B. Mauduit to

whom I also extend my warmest thanks.
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