Undergraduate Texts in Mathematics

Editors

S. Axler
F.W. Gehring
K.A. Ribet



Undergraduate Texts in Mathematics

Abbott: Understanding Analysis.

Anglin: Mathematics: A Concise History
and Philosophy.

Readings in Mathematics.

Anglin/Lambek: The Heritage of
Thales.

Readings in Mathematics.

Apostol: Introduction to Analytic
Number Theory. Second edition.

Armstrong: Basic Topology.

Armstrong: Groups and Symmetry.

Axler: Linear Algebra Done Right.
Second edition.

Beardon: Limits: A New Approach to
Real Analysis.

Bak/Newman: Complex Analysis.
Second edition.

Banchoff/Wermer: Linear Algebra
Through Geometry. Second edition.

Berberian: A First Course in Real
Analysis.

Bix: Conics and Cubics: A
Concrete Introduction to Algebraic
Curves.

Brémaud: An Introduction to
Probabilistic Modeling.

Bressoud: Factorization and Primality
Testing.

Bressoud: Second Year Calculus.
Readings in Mathematics.

Brickman: Mathematical Introduction
to Linear Programming and Game
Theory.

Browder: Mathematical Analysis:

An Introduction.

Buchmann: Introduction to
Cryptography.

Buskes/van Rooij: Topological Spaces:
From Distance to Neighborhood.
Callahan: The Geometry of Spacetime:
An Introduction to Special and General

Relavitity.

Carter/van Brunt: The Lebesgue—
Stieltjes Integral: A Practical
Introduction.

Cederberg: A Course in Modern
Geometries. Second edition.

Chambert-Loir: A Field Guide to Algebra

Childs: A Concrete Introduction to
Higher Algebra. Second edition.

Chung/AitSahlia: Elementary Probability
Theory: With Stochastic Processes and
an Introduction to Mathematical
Finance. Fourth edition.

Cox/Little/O’Shea: Ideals, Varieties,
and Algorithms. Second edition.

Croom: Basic Concepts of Algebraic
Topology.

Curtis: Linear Algebra: An Introductory
Approach. Fourth edition.

Daepp/Gorkin: Reading, Writing, and
Proving: A Closer Look at
Mathematics.

Devlin: The Joy of Sets: Fundamentals
of Contemporary Set Theory.
Second edition.

Dixmier: General Topology.

Driver: Why Math?

Ebbinghaus/Flum/Thomas:
Mathematical Logic. Second edition.

Edgar: Measure, Topology, and Fractal
Geometry.

Elaydi: An Introduction to Difference
Equations. Second edition.

Erdés/Suranyi: Topics in the Theory of
Numbers.

Estep: Practical Analysis in One Variable.

Exner: An Accompaniment to Higher
Mathematics.

Exner: Inside Calculus.

Fine/Rosenberger: The Fundamental
Theory of Algebra.

Fischer: Intermediate Real Analysis.

Flanigan/Kazdan: Calculus Two: Linear
and Nonlinear Functions. Second
edition.

Fleming: Functions of Several Variables.
Second edition.

Foulds: Combinatorial Optimization for
Undergraduates.

Foulds: Optimization Techniques: An
Introduction.

Franklin: Methods of Mathematical

Economics.
(continued after index)



Lindsay N. Childs

A Concrete Introduction
to Higher Algebra

Second Edition

@ Springer



Lindsay N. Childs
Department of Mathematics
SUNY at Albany

Albany, NY 12222

USA

Editorial Board

S. Axler
Mathematics Department
San Francisco State

F.W. Gehring
Mathematics Department
East Hall

K.A. Ribet
Mathematics Department
University of California

University University of Michigan at Berkeley
San Francisco, CA 94132 Ann Arbor, MI 48109 Berkeley, CA 94720-3840
USA USA USA

Mathematics Subject Classification (2000): 12-01

Library of Congress Cataloging-in-Publication Data
Childs, Lindsay.
A concrete introduction to higher algebra / Lindsay N. Childs. —
2nd ed.
p. cm.
Includes bibliographical references (p. — ) and index.
ISBN 978-0-387-98999-0 ISBN 978-1-4419-8702-0 (eBook)
DOI 10.1007/978-1-4419-8702-0

1. Algebra. I Title.
QAI155.C53 1995
512°.7—dc20 95-5934

ISBN 978-0-387-98999-0 Printed on acid-free paper.

With 9 Illustrations

First softcover printing, 2000

©1995,1979 Springer Science+Business Media New York

Originally published by Springer Science+Business Media, Inc.in 1995

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher Springer Science+Business Media, LLC

except for brief excerpts in connection with

reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

9876

springeronline.com



To Rhonda



Introduction

This book is written as an introduction to higher algebra for students with
a background of a year of calculus. The first edition of this book emerged
from a set of notes written in the 1970s for a sophomore—junior level course
at the University at Albany entitled “Classical Algebra.”

The objective of the course, and the book, is to give students enough
experience in the algebraic theory of the integers and polynomials to appre-
ciate the basic concepts of abstract algebra. The main theoretical thread is
to develop algebraic properties of the ring of integers: unique factorization
into primes, congruences and congruence classes, Fermat’s theorem, the
Chinese remainder theorem; and then again for the ring of polynomials.
Doing so leads to the study of simple field extensions, and, in particular, to
an exposition of finite fields. Elementary properties of rings, fields, groups,
and homomorphisms of these objects are introduced and used as needed in
the development.

Concurrently with the theoretical development, the book presents a
broad variety of applications, to cryptography, error-correcting codes, Latin
squares, tournaments, techniques of integration, and especially to elemen-
tary and computational number theory. A student who asks, “Why am I
learning this?,” will find answers usually within a chapter or two.

For a first course in algebra, the book offers a couple of advantages.

» By building the algebra out of numbers and polynomials, the book
takes maximal advantage of the student’s prior experience in algebra and
arithmetic. New concepts arise in a familiar context.

» The early introduction and extensive use of congruence classes pre-
pares the student well to understand quotient structures in subsequent
courses.
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vili Introduction

In addition, for a first course in algebra, and especially for the only
course in algebra a student might take, the subject-matter of the book has
other intrinsic advantages: elegance, relevance, and vitality.

Elegance. Einstein once wrote, “Pure mathematics is, in its way, the po-
etry of logical ideas.” The ideas in this book, I believe, display a beauty
which is inherent in all great mathematics. Number theory arose out of the
religious environment of the Pythagoreans, and attracted the best efforts of
Fermat, Euler, and Gauss, among the greatest mathematicians in history,
not because of any external stimulus, but because of its intrinsic attrac-
tiveness.

Relevance. The development of computing power and the discovery of
the RSA cryptosystem have led to an explosion of research interest in com-
putational number theory. Since the first edition appeared, the study of
factoring and primality testing, and related questions in number theory,
have entered the mainstream of mathematical research. The most striking
advances have appeared in the most prestigious research journals, as well as
in the daily newspapers.

Many of the advances in computational number theory are built on the
mathematics which is presented in this book.

Thus the book may be used as a first course in higher algebra, as origi-
nally intended, but may also serve as an introduction to modern computa-
tional number theory, or to applied algebra.

Vitality. Lynn Steen wrote not so long ago that in contrast to most other
sciences, a typical mathematics undergraduate is exposed to very little
mathematics discovered since 1800, and hence gets no sense that mathemat-
ics is a rapidly growing science.

While much of the basic theory in this book dates from the eighteenth
century or before, many of the applications date from the last two decades. I
found it exciting to discover and present many of these newer applications
while writing this book. I hope the reader will gain from the book some
sense of the vitality of this branch of contemporary mathematics.

Notes on the Second Edition

The first edition of this book has been in print for 15 years, a gratifyingly
long time. However, extensive classroom experience with the first edition, as
well as advances in mathematics, has made a new edition desirable. I have
been rewriting sections of the book, off and on, over the last 10 years:
improving the exposition, adjusting the emphasis, adding (and subtracting)
applications, changing the exercises. The result is that nearly every chapter
has been rewritten—it is almost a new book.

The new edition retains the overall organization of the original. The first
part, now Chapters 1-13, presents elementary number theory, the second
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part, now Chapters 14-22, studies polynomials, and the third part, now
Chapters 23-30, offers applications of the primitive element theorem and
develops finite fields.

New features include:

+ a greater emphasis on aspects of finite groups—orders of elements,
subgroups, cyclic groups, Lagrange’s theorem, the primary decomposition
theorem;

» development of primality testing and factoring as a theme in the appli-
cations, with several new sections on factoring and several on primality
testing, culminating in a proof of Rabin’s theorem on strong a-pseudoprime
testing;

+ increased use of the Chinese remainder theorem for both numbers and
polynomials, as an important tool in applications;

» more explicit use of homomorphisms;

- a new treatment of quadratic reciprocity, and with added applications;

 a new chapter on the fundamental theorem of algebra which includes
treatments of the cubic (Cardano) and quartic (Ferrari, Euler); and

- two applications (fast polynomial multiplication, Reed—Solomon codes)
which use the discrete Fourier transform.

In an area moving as rapidly as computational number theory, many of
the applications presented will, in practice, not be “the state of the art.” For
example, probabilistic improvements on Berlekamp’s algorithm for factoring
polynomials over finite fields have recently appeared (see von der Gathen
and Schoup (1992), Kaltofen and Lobo (1994)); Rabin’s test is only one of
the tools now used to test primality of large numbers (see Pinch (1993));
and Arjen Lenstra, on top of his team’s success in factoring the 129 digit
number RSA-129 in 1994, promises dramatic improvements in the factoriza-
tion of large numbers (see Lenstra and Lenstra (1993)). But while the appli-
cations we present may not represent the latest word, even as I write this
Preface, they are nonetheless worthwhile pedagogically, as significant appli-
cations of the theory and as prerequisites for understanding the newer algo-
rithms, and because in almost all cases they are elegant mathematics.

Prerequisites

The explicit prerequisite consists of precalculus algebra. However, experi-
ence with the first edition suggests that three or four semesters of college
level mathematics, such as the calculus sequence and a semester of linear
algebra, is helpful. Only a few sections of the book use calculus or linear
algebra, and a course can easily be designed to avoid those sections. Ele-
mentary matrix theory is summarized in Chapter 13, and used to some
extent in chapters 11E, 13E and F, 21B, 22A, 28E, 29, and 30B.
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Designing a Course

There is enough material in this book for a full two-semester course in
higher algebra and applications.

For a one-semester course there are a number of options.

The basic theory is found in Chapters 2A-D, 3A-C, 4A-B, 5, 6, 8, 9,
11A-B, 12A-B, 14, 15, 20, 23, 24, 28, and 30.

For the one-semester course I try to cover most of the basic theory, plus
Chapter 10B and other applications as time allows. Other instructors do
less theory and more applications.

A nice course on computational number theory can be taught from
Chapters 1-12 and 23-27. Such a course, while not bringing out the paral-
lelism of the theory for numbers and polynomials, would use group theory
and the Chinese remainder theorem in significant ways in studying primality
testing.

A course emphasizing polynomials could cover the basic theory through
Chapter 12B and then focus on Chapters 14-22 and 28-30.
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