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Preface

This book is based on a two-semester course in ordinary differential equa-
tions that I have taught to graduate students for two decades at the Uni-
versity of Missouri. The scope of the narrative evolved over time from
an embryonic collection of supplementary notes, through many classroom
tested revisions, to a treatment of the subject that is suitable for a year (or
more) of graduate study.

If it is true that students of differential equations give away their point of
view by the way they denote the derivative with respect to the independent
variable, then the initiated reader can turn to Chapter 1, note that I write
ẋ, not x′, and thus correctly deduce that this book is written with an eye
toward dynamical systems. Indeed, this book contains a thorough intro-
duction to the basic properties of differential equations that are needed to
approach the modern theory of (nonlinear) dynamical systems. However,
this is not the whole story. The book is also a product of my desire to
demonstrate to my students that differential equations is the least insular
of mathematical subjects, that it is strongly connected to almost all areas
of mathematics, and it is an essential element of applied mathematics.

When I teach this course, I use the first part of the first semester to pro-
vide a rapid, student-friendly survey of the standard topics encountered in
an introductory course of ordinary differential equations (ODE): existence
theory, flows, invariant manifolds, linearization, omega limit sets, phase
plane analysis, and stability. These topics, covered in Sections 1.1–1.8 of
Chapter 1 of this book, are introduced, together with some of their im-
portant and interesting applications, so that the power and beauty of the
subject is immediately apparent. This is followed by a discussion of linear
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systems theory and the proofs of the basic theorems on linearized stabil-
ity in Chapter 2. Then, I conclude the first semester by presenting one
or two realistic applications from Chapter 3. These applications provide a
capstone for the course as well as an excellent opportunity to teach the
mathematics graduate students some physics, while giving the engineering
and physics students some exposure to applications from a mathematical
perspective.

In the second semester, I introduce some advanced concepts related to
existence theory, invariant manifolds, continuation of periodic orbits, forced
oscillators, separatrix splitting, averaging, and bifurcation theory. However,
since there is not enough time in one semester to cover all of this material
in depth, I usually choose just one or two of these topics for presentation in
class. The material in the remaining chapters is assigned for private study
according to the interests of my students.

My course is designed to be accessible to students who have only stud-
ied differential equations during one undergraduate semester. While I do
assume some knowledge of linear algebra, advanced calculus, and analysis,
only the most basic material from these subjects is required: eigenvalues and
eigenvectors, compact sets, uniform convergence, the derivative of a func-
tion of several variables, and the definition of metric and Banach spaces.
With regard to the last prerequisite, I find that some students are afraid
to take the course because they are not comfortable with Banach space
theory. However, I put them at ease by mentioning that no deep properties
of infinite dimensional spaces are used, only the basic definitions.

Exercises are an integral part of this book. As such, many of them are
placed strategically within the text, rather than at the end of a section.
These interruptions of the flow of the narrative are meant to provide an
opportunity for the reader to absorb the preceding material and as a guide
to further study. Some of the exercises are routine, while others are sections
of the text written in “exercise form.” For example, there are extended ex-
ercises on structural stability, Hamiltonian and gradient systems on man-
ifolds, singular perturbations, and Lie groups. My students are strongly
encouraged to work through the exercises. How is it possible to gain an un-
derstanding of a mathematical subject without doing some mathematics?
Perhaps a mathematics book is like a musical score: by sight reading you
can pick out the notes, but practice is required to hear the melody.

The placement of exercises is just one indication that this book is not
written in axiomatic style. Many results are used before their proofs are pro-
vided, some ideas are discussed without formal proofs, and some advanced
topics are introduced without being fully developed. The pure axiomatic
approach forbids the use of such devices in favor of logical order. The other
extreme would be a treatment that is intended to convey the ideas of the
subject with no attempt to provide detailed proofs of basic results. While
the narrative of an axiomatic approach can be as dry as dust, the excite-
ment of an idea-oriented approach must be weighed against the fact that
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it might leave most beginning students unable to grasp the subtlety of the
arguments required to justify the mathematics. I have tried to steer a mid-
dle course in which careful formulations and complete proofs are given for
the basic theorems, while the ideas of the subject are discussed in depth
and the path from the pure mathematics to the physical universe is clearly
marked. I am reminded of an esteemed colleague who mentioned that a
certain textbook “has lots of fruit, but no juice.” Above all, I have tried to
avoid this criticism.

Application of the implicit function theorem is a recurring theme in the
book. For example, the implicit function theorem is used to prove the rec-
tification theorem and the fundamental existence and uniqueness theorems
for solutions of differential equations in Banach spaces. Also, the basic re-
sults of perturbation and bifurcation theory, including the continuation of
subharmonics, the existence of periodic solutions via the averaging method,
as well as the saddle node and Hopf bifurcations, are presented as appli-
cations of the implicit function theorem. Because of its central role, the
implicit function theorem and the terrain surrounding this important re-
sult are discussed in detail. In particular, I present a review of calculus in
a Banach space setting and use this theory to prove the contraction map-
ping theorem, the uniform contraction mapping theorem, and the implicit
function theorem.

This book contains some material that is not encountered in most treat-
ments of the subject. In particular, there are several sections with the title
“Origins of ODE,” where I give my answer to the question “What is this
good for?” by providing an explanation for the appearance of differential
equations in mathematics and the physical sciences. For example, I show
how ordinary differential equations arise in classical physics from the fun-
damental laws of motion and force. This discussion includes a derivation
of the Euler–Lagrange equation, some exercises in electrodynamics, and
an extended treatment of the perturbed Kepler problem. Also, I have in-
cluded some discussion of the origins of ordinary differential equations in
the theory of partial differential equations. For instance, I explain the idea
that a parabolic partial differential equation can be viewed as an ordinary
differential equation in an infinite dimensional space. In addition, traveling
wave solutions and the Galërkin approximation technique are discussed.
In a later “origins” section, the basic models for fluid dynamics are intro-
duced. I show how ordinary differential equations arise in boundary layer
theory. Also, the ABC flows are defined as an idealized fluid model, and I
demonstrate that this model has chaotic regimes. There is also a section on
coupled oscillators, a section on the Fermi–Ulam–Pasta experiments, and
one on the stability of the inverted pendulum where a proof of linearized
stability under rapid oscillation is obtained using Floquet’s method and
some ideas from bifurcation theory. Finally, in conjunction with a treat-
ment of the multiple Hopf bifurcation for planar systems, I present a short
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introduction to an algorithm for the computation of the Lyapunov quanti-
ties as an illustration of computer algebra methods in bifurcation theory.

Another special feature of the book is an introduction to the fiber con-
traction principle as a powerful tool for proving the smoothness of functions
that are obtained as fixed points of contractions. This basic method is used
first in a proof of the smoothness of the flow of a differential equation
where its application is transparent. Later, the fiber contraction principle
appears in the nontrivial proof of the smoothness of invariant manifolds
at a rest point. In this regard, the proof for the existence and smoothness
of stable and center manifolds at a rest point is obtained as a corollary of
a more general existence theorem for invariant manifolds in the presence
of a “spectral gap.” These proofs can be extended to infinite dimensions.
In particular, the applications of the fiber contraction principle and the
Lyapunov–Perron method in this book provide an introduction to some of
the basic tools of invariant manifold theory.

The theory of averaging is treated from a fresh perspective that is in-
tended to introduce the modern approach to this classical subject. A com-
plete proof of the averaging theorem is presented, but the main theme of
the chapter is partial averaging at a resonance. In particular, the “pen-
dulum with torque” is shown to be a universal model for the motion of a
nonlinear oscillator near a resonance. This approach to the subject leads
naturally to the phenomenon of “capture into resonance,” and it also pro-
vides the necessary background for students who wish to read the literature
on multifrequency averaging, Hamiltonian chaos, and Arnold diffusion.

I prove the basic results of one-parameter bifurcation theory—the saddle
node and Hopf bifurcations—using the Lyapunov–Schmidt reduction. The
fact that degeneracies in a family of differential equations might be un-
avoidable is explained together with a brief introduction to transversality
theory and jet spaces. Also, the multiple Hopf bifurcation for planar vector
fields is discussed. In particular, and the Lyapunov quantities for polyno-
mial vector fields at a weak focus are defined and this subject matter is
used to provide a link to some of the algebraic techniques that appear in
normal form theory.

Since almost all of the topics in this book are covered elsewhere, there is
no claim of originality on my part. I have merely organized the material in
a manner that I believe to be most beneficial to my students. By reading
this book, I hope that you will appreciate and be well prepared to use the
wonderful subject of differential equations.

Columbia, Missouri Carmen Chicone
June 1999
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