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Preface 

This book evolved from a course at our university for beginning graduate stu
dents in mathematics-particularly students who intended to specialize in ap
plied mathematics. The content of the course made it attractive to other math
ematics students and to graduate students from other disciplines such as en
gineering, physics, and computer science. Since the course was designed for 
two semesters duration, many topics could be included and dealt with in de
tail. Chapters 1 through 6 reflect roughly the actual nature of the course, as it 
was taught over a number of years. The content of the course was dictated by 
a syllabus governing our preliminary Ph.D. examinations in the subject of ap
plied mathematics. That syllabus, in turn, expressed a consensus of the faculty 
members involved in the applied mathematics program within our department. 
The text in its present manifestation is my interpretation of that syllabus: my 
colleagues are blameless for whatever flaws are present and for any inadvertent 
deviations from the syllabus. 

The book contains two additional chapters having important material not 
included in the course: Chapter 8, on measure and integration, is for the ben
efit of readers who want a concise presentation of that subject, and Chapter 7 
contains some topics closely allied, but peripheral, to the principal thrust of the 
course. 

This arrangement of the material deserves some explanation. The ordering 
of chapters reflects our expectation of our students: If they are unacquainted 
with Lebesgue integration (for example), they can nevertheless understand the 
examples of Chapter 1 on a superficial level, and at the same time, they can 
begin to remedy any deficiencies in their knowledge by a little private study 
of Chapter 8. Similar remarks apply to other situations, such as where some 
point-set topology is involved; Section 7.6 will be helpful here. To summarize: 
We encourage students to wade boldly into the course, starting with Chapter 1, 
and, where necessary, fill in any gaps in their prior preparation. One advantage 
of this strategy is that they will see the necessity for topology, measure theory, 
and other topics - thus becoming better motivated to study them. In keeping 
with this philosophy, I have not hesitated to make forward references in some 
proofs to material coming later in the book. For example, the Banach contraction 
mapping theorem is needed at least once prior to the section in Chapter 4 where 
it is dealt with at length. 

Each of the book's six main topics could certainly be the subject of a year's 
course (or a lifetime of study), and many of our students indeed study functional 
analysis and other topics of the book in separate courses. Most of them eventu
ally or simultaneously take a year-long course in analysis that includes complex 
analysis and the theory of measure and integration. However, the applied math
ematics course is typically taken in the first year of graduate study. It seems 
to bridge the gap between the undergraduate and graduate curricula in a way 
that has been found helpful by many students. In particular, the course and the 
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vi Preface 

book certainly do not presuppose a thorough knowledge of integration theory nor 
of topology. In our applied mathematics course, students usually enhance and 
reinforce their knowledge of undergraduate mathematics, especially differential 
equations, linear algebra, and general mathematical analysis. Students may, for 
the first time, perceive these branches of mathematics as being essential to the 
foundations of applied mathematics. 

The book could just as well have been titled Prolegomena to Applied Math
ematics, inasmuch as it is not about applied mathematics itself but rather about 
topics in analysis that impinge on applied mathematics. Of course, there is 
no end to the list of topics that could lay claim to inclusion in such a book. 
Who is bold enough to predict what branches of mathematics will be useful in 
applications over the next decade? A look at the past would certainly justify 
my favorite algorithm for creating an applied mathematician: Start with a pure 
mathematician, and turn him or her loose on real-world problems. 

As in some other books I have been involved with, lowe a great debt of 
gratitude to Ms. Margaret Combs, our departmental 'lEX-pert. She typeset and 
kept up-to-date the notes for the course over many years, and her resourcefulness 
made my burden much lighter. 

The staff of Springer-Verlag has been most helpful in seeing this book to 
completion. In particular, I worked closely with Dr. Ina Lindemann and Ms. 
Terry Kornak on editorial matters, and I thank them for their efforts on my 
behalf. I am indebted to David Kramer for his meticulous copy-editing of the 
manuscript; it proved to be very helpful in the final editorial process. 

I thank my wife, Victoria, for her patience and assistance during the period 
of work on the book, especially the editorial phase. I dedicate the book to her 
in appreciation. 

I will be pleased to hear from readers having questions or suggestions 
for improvements in the book. For this purpose, electronic mail is efficient: 
cheney(Qmath. utexas . edu. I will also maintain a web site for material related 
to the book at http://www . math. utexas . edu/users/ cheney / AAMbook 

Ward Cheney 
Department of Mathematics 

University of Texas at Austin 
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