Translations of

MATHEMATICAL MONOGRAPHS

Volume 174

Second Order Elliptic Equations and Elliptic Systems

Ya-Zhe Chen Lan-Cheng Wu

Translated by Bei Hu

Contents

Preface to the English Translation	
Preface	xiii
Part I. Second Order Elliptic Equations	1
Chapter 1. L^2 Theory	3
1. Lax-Milgram theorem	3
2. Weak solutions of elliptic equations	4
3. The Fredholm Alternative	7
4. A maximum principle for weak solutions	8
5. Regularity for weak solutions	13
Chapter 2. Schauder Theory	17
1. Hölder spaces	17
2. Mollifiers	. 20
3. $C^{2,\alpha}$ estimates for solutions of potential equations	23
4. Interior Schauder estimates	27
5. Global Schauder estimates	30
6. A maximum principle for classical solutions	32
7. Solvability of the Dirichlet problem	33
Chapter 3. L^p Theory	37
1. The Marcinkiewicz interpolation theorem	37
2. A decomposition lemma	40
3. Estimates for solutions of potential equations	41
4. Interior $W^{2,p}$ estimates	46
5. Global $W^{2,p}$ estimates	47
6. Existence of $W^{2,p}$ solutions	49
Chapter 4. De Giorgi-Nash-Moser Estimates	53
1. Local properties of weak solutions	53
2. Interior Hölder continuity	60
3. Global Hölder continuity	63
Chapter 5. Quasilinear Equations of Divergence Form	67
1 Boundedness of weak solutions	67

viii CONTENTS

2.	Hölder estimates for bounded weak solutions	69
3.	Gradient estimates	72
4.	Gradient Hölder estimates	74
5.	Solvability of the Dirichlet problem	76
Chap	ter 6. Krylov-Safonov Estimates	79
1.	The Alexandroff-Bakelman-Pucci maximum principle	79
2.	Harnack inequalities and interior Hölder estimates	87
3.	Global Hölder estimates	96
Chap	ter 7. Fully Nonlinear Elliptic Equations	99
1.	Maximum norm and Hölder estimates for solutions	100
2.	Gradient estimates	104
3.	Gradient Hölder estimates	107
4.	Solvability for quasilinear equations of nondivergence form	113
5.	Solvability for fully nonlinear equations	115
6.	A special class of equations	117
7.	General fully nonlinear equations	122
Part	II. Second Order Elliptic Systems	129
Chap	ter 8. L^2 Theory for Linear Elliptic Systems of Divergence Form	131
1.	Existence of weak solutions	131
2.	Energy estimates and H^2 regularity	134
Chap	ter 9. Schauder Theory for Linear Elliptic Systems of Divergence Form	137
1.	Morrey and Campanato spaces	137
2.	Schauder theory	145
Chap	ter 10. L^p Theory for Linear Elliptic Systems of Divergence Form	155
1.	BMO spaces and the Stampacchia interpolation theorem	155
2.	L^p theory	156
Chap	ter 11. Existence of Weak Solutions of Nonlinear Elliptic Systems	163
1.	Introduction	163
2.	The variational method	164
Chapt	ter 12. Regularity for Weak Solutions of Nonlinear Elliptic Systems	173
1.	H^2 regularity	173
2.	Further regularity and counterexamples	178
3.	Indirect method for studying regularity	181
4.	The reverse Hölder inequality and L^p estimates for Du	187
5.	Direct methods for studying regularity	198
6.	The singular set	204

CONTENTS		
----------	--	--

ix

Appendix 1.	Sobolev Spaces	209
1. Weak	derivatives and the Sobolev space $W^{k,p}(\Omega)$	209
2. Real e	xponent Sobolev spaces $H^s(\mathbb{R}^n)$	212
3. Poinca	aré's inequality	213
Appendix 2.	Sard's Theorem	215^{\circlearrowleft}
Appendix 3.	Proof of the John-Nirenberg Theorem	217
Appendix 4.	Proof of the Stampacchia Interpolation Theorem	219
Appendix 5.	Proof of the Reverse Hölder Inequality	225
Bibliographic	e Notes	233
Bibliography		239
Index		245