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Dedicated to the memory of 
Heinz and Anja Hopf 

When the familiar scene is suddenly strange 
Or the well known is what we have yet to learn, 
And two worlds meet, and intersect, and change; 

T. S. Eliot 



Preface 

This book has grown out of a course of lectures on elliptic functions, given in 
German, at the Swiss Federal Institute of Technology, Zurich, during the 
summer semester of 1982. Its aim is to give some idea of the theory of elliptic 
functions, and of its close connexion with theta-functions and modular 
functions, and to show how it provides an analytic approach to the solution of 
some classical problems in the theory of numbers. It comprises eleven chapters. 
The first seven are function-theoretic, and the next four concern arithmetical 
applications. There are Notes at the end of every chapter, which contain 
references to the literature, comments on the text, and on the ramifications, old 
and new, of the problems dealt with, some of them extending into cognate 
fields. The treatment is self-contained, and makes no special demand on the 
reader's knowledge beyond the elements of complex analysis in one variable, 
and of group theory. 

Professor Raghavan Narasimhan has read the definitive English version of 
the text, and made illuminating comments, as a result of which I have improved 
the presentation in several places. Dr. Anton Good has looked through the first 
German version, and spared the time for many useful discussions. Dr. Peter 
Thurnheer, who had attended the course, helped me check the detailed calcula­
tions that lurk behind some of the statements in the text. Mr. Albert Stadler has 
assisted me in tracing the bibliographical references and in proof-reading. My 
sincere thanks go to them all for sustaining this effort during a difficult 
twelvemonth. 

Thanks are due to the editors of the Grundlehren, particularly to Professor 
Beno Eckmann, and to Springer-Verlag, for getting this thing into print. 

Zurich, October 1984 K.C. 
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