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For Sarada 



Preface 

The plan of this book had its inception in a course of lectures 
on arithmetical functions given by me in the summer of 1964 
at the Forschungsinstitut fUr Mathematik of the Swiss Federal 
Institute of Technology, Zurich, at the invitation of Professor 
Beno Eckmann. My Introduction to Analytic Number Theory 
has appeared in the meanwhile, and this book may be looked 
upon as a sequel. It presupposes only a modicum of acquaintance 
with analysis and number theory. 

The arithmetical functions considered here are those associated 
with the distribution of prime numbers, as well as the partition 
function and the divisor function. Some of the problems posed 
by their asymptotic behaviour form the theme. They afford a 
glimpse of the variety of analytical methods used in the theory, 
and of the variety of problems that await solution. 

I owe a debt of gratitude to Professor Carl Ludwig Siegel, 
who has read the book in manuscript and given me the benefit 
of his criticism. I have improved the text in several places in 
response to his comments. I must thank Professor Raghavan 
Narasimhan for many stimulating discussions, and Mr. Henri 
Joris for the valuable assistance he has given me in checking 
the manuscript and correcting the proofs. 

July 1970 K. Chandrasekharan 
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