Complex Dynamics

With 28 Figures

Lennart Carleson Department of Mathematics Royal Institute of Technology S-100 44 Stockholm Sweden and Department of Mathematics University of California Los Angeles, CA 90024-1555 USA Theodore W. Gamelin Department of Mathematics University of California Los Angeles, CA 90024-1555 USA

Editorial Board (North America):

S. Axler Department of Mathematics Michigan State University East Lansing, MI 48824 USA F.W. Gehring Department of Mathematics Universtiy of Michigan Ann Arbor, MI 48109 USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

On the cover: A filled-in Julia set with parabolic fixed point, attracting petals, and repelling arms.

e-ISBN-13: 978-1-4612-4364-9

Mathematics Subject Classification (1991): 30Cxx, 58Fxx

Library of Congress Cataloging-in-Publication Data Carleson, Lennart. Complex dynamics/by L. Carleson and T. Gamelin. p. cm. - (Universitext) Includes bibliographical references and index.

ISBN-13: 978-0-387-97942-7 DOI: 10.1007/978-1-4612-4364-9

1. Functions of complex variables.2. Mappings (Mathematics)3. Fixed point theory.I. Title.QA331.7.C371993515'.9-dc2092-32457

Printed on acid-free paper.

© 1993 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Francine McNeill; manufacturing supervised by Vincent Scelta. Photocomposed copy prepared from the author's **AmS-TFX** file.

9 8 7 6 5 4 3 2 (Corrected second printing, 1995)

Contents

Preface

I.	Conformal and Quasiconformal Mappings	1
	1. Some Estimates on Conformal Mappings	1
	2. The Riemann Mapping	5
	3. Montel's Theorem	9
	4. The Hyperbolic Metric	11
	5. Quasiconformal Mappings	15
	6. Singular Integral Operators	17
	7. The Beltrami Equation	19
II.	Fixed Points and Conjugations	27
	1. Classification of Fixed Points	27
	2. Attracting Fixed Points	31
	3. Repelling Fixed Points	32
	4. Superattracting Fixed Points	33
	5. Rationally Neutral Fixed Points	35
	6. Irrationally Neutral Fixed Points	41
	7. Homeomorphisms of the Circle	47

 \mathbf{v}

III.	Basic Rational Iteration	53
	1. The Julia Set	53
	2. Counting Cycles	58
	3. Density of Repelling Periodic Points	63
	4. Polynomials	65
IV.	Classification of Periodic Components	69
	1. Sullivan's Theorem	69
	2. The Classification Theorem	74
	3. The Wolff–Denjoy Theorem	79
v.	Critical Points and Expanding Maps	81
	1. Siegel Disks	81
	2. Hyperbolicity	89
	3. Subhyperbolicity	91
	4. Locally Connected Julia Sets	93
VI.	Applications of Quasiconformal Mappings	99
	1. Polynomial-like Mappings	99
	2. Quasicircles	101
	3. Herman Rings	103
	4. Counting Herman Rings	105
	5. A Quasiconformal Surgical Procedure	106
VII.	Local Geometry of the Fatou Set	109
	1. Invariant Spirals	109
	2. Repelling Arms	113
	3. John Domains	117
VIII	. Quadratic Polynomials	123
	1. The Mandelbrot Set	123
	2. The Hyperbolic Components of \mathcal{M}	133
	3. Green's Function of \mathcal{J}_c	136
	4. Green's Function of \mathcal{M}	139
	5. External Rays with Rational Angles	142
	6. Misiurewicz Points	148
	7. Parabolic Points	153

	Contents	ix
Epilogue		161
References		163
Index		171
Symbol Index		175