Studies in the History of Mathematics and Physical Sciences

6

Editor

G. J. Toomer

Advisory Board R. Boas P. Davis T. Hawkins M. J. Klein A. E. Shapiro D. Whiteside John T. Cannon Sigalia Dostrovsky

The Evolution of Dynamics: Vibration Theory from 1687 to 1742

With 10 Illustrations

Springer-Verlag New York Heidelberg Berlin

JOHN T. CANNON and SIGALIA DOSTROVSKY 155 Fairfield Pike Yellow Springs, Ohio 45387/USA

AMS Subject Classifications: 01A45, 01A50, 73-03, 73 D30

Library of Congress Cataloging in Publication Data

Cannon, John T. The evolution of dynamics: vibration theory from 1687 to 1742. (Studies in the history of mathematics and physical sciences; 6) Bibliography: p. Includes index.
1. Vibration—History—17th century.
2. Vibration—History—18th century.
I. Dostrovsky, Sigalia. II. Title.
III. Series.
QA865.C36 531'.32 81-14353
ISBN-13: 978-1-4613-9463-1 AACR2

© 1981 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1981 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

9 8 7 6 5 4 3 2 1

ISBN-13: 978-1-4613-9463-1 e-ISBN-13: 978-1-4613-9461-7 DOI: 10.1007/ 978-1-4613-9461-7

Preface

In this study we are concerned with Vibration Theory and the Problem of Dynamics during the half century that followed the publication of Newton's *Principia*. The relationship that existed between these subjects is obscured in retrospection for it is now almost impossible not to view (linear) Vibration Theory as linearized Dynamics. But during the half century in question a theory of Dynamics did not exist; while Vibration Theory comprised a good deal of acoustical information, posed definite problems and obtained specific results. In fact, it was through problems posed by Vibration Theory that a general theory of Dynamics was motivated and discovered.

Believing that the emergence of Dynamics is a critically important link in the history of mathematical science, we present this study with the primary goal of providing a guide to the relevant works in the aforementioned period. We try above all to make the contents of the works readily accessible and we try to make clear the historical connections among many of the pertinent ideas, especially those pertaining to Dynamics in many degrees of freedom. But along the way we discuss other ideas on emerging subjects such as Calculus, Linear Analysis, Differential Equations, Special Functions, and Elasticity Theory, with which Vibration Theory is deeply interwound. Many of these ideas are elementary but they appear in a surprising context: For example the eigenvalue problem does not arise in the context of special solutions to linear problems—it appears as a condition for isochronous vibrations.

Although mathematical thought differs in different ages, mathematics itself has a coherence that transcends time. Thus it provides a powerful tool with which to grasp modes of thought from former times. From an immersion in the details of mathematical arguments, one can gather enough precise understanding to be able to enter into the domain of the intuitive. Therefore we believe that our study not only describes a link in the evolution of a specific subject but also that it assists in the attainment of a feel for physics in the age of Newton and the Bernoullis.

In spite of its evident importance, dynamics in the first half of the eighteenth century has been largely neglected. This is the period of late Newton and early Euler; thus it lies in the shadow of great brilliance coming from both before and after. For example, Euler was a central figure; but

Preface

his works from the period go with little notice because he later reworked everything in a form and from a point of view that have become generally familiar. Thus Truesdell's notes on Euler were pioneering works.¹ Truesdell emphasized the fact that the idea of dynamical equations was slow to emerge; furthermore, he provided a basic indication of the contents of a vast number of papers, including most of the papers considered in the present study. We gratefully acknowledge our indebtedness to his notes.

Yellow Springs April 1981

J.C. and S.D.

vi

¹ Truesdell [1, 2].

Table of Contents

1.	Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	Newton (1687)	•	•														•					•	9
	2.1. Pressure Wave	•	•		•	•	•		•	•			•	•	•	•	•	•			•	•	9
	2.2. Remarks	•	•	·	·	•	·	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	13
3.	Taylor (1713) .	•	•	•		•		•			•	•	•	•		•		•	•	•	•		15
	3.1. Vibrating String	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		15
	3.2. Absolute Frequer 3.3. Remarks	ncy	′ •	•	•	•	•	•	•	•	•	•	•	•	•	:	•	•	•	•	•	•	19 20
	0 (1510)																						
4.	Sauveur $(1/13)$	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	·	•	23
	4.1. Vibrating String 4.2. Remarks	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	23 26
5.	Hermann (1716)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	5.1. Pressure Wave	•	•	•	•	•	•	•	•	·	•	•	·	•	•	•	•	·	•	•	•	·	28
	5.3. Remarks	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30 31
6.	Cramer (1722)	•						•			•		•										33
	6.1. Sound			•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•	33
	6.2. Remarks	•	·	•	•	·	·	·	·	·	·	·	•	·	•	·	•	•	•	·	•	•	33
7.	Euler (1727)				•			•				•	•					•					37
	7.1. Vibrating Ring						•		•	•	•			•		•						•	37
	7.2. Sound	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
8.	Johann Bernoull	i (1′	72	28)		•				•			•				•				47
	8.1. Vibrating String	(Co	on	tin	uc	ous	a	nd	D	isc	re	te))				•	•	•	•			47
	8.2. Remark on the E	ne	rg	y ľ	Мe	eth	od	l															52

Con	tent	S

9.	Daniel Bernoulli (1733; 1734); Euler (1736)					•	53
	9.1. Linked Pendulum and Hanging Chain						53
	9.2. Laguerre Polynomials and J_0						58
	9.3. Double and Triple Pendula						60
	9.4. Roots of Polynomials	•	•	•	•	•	61
	9.5. Zeros of J_0	•	•	•	•	•	63
	9.6. Other Boundary Conditions	·	·	·	·	•	64
	9.7. The Bessel Functions J_{ν}	•	·	•	·	•	66
10.	Euler (1735)		_				70
		·	•	·	•	·	
	10.1. Pendulum Condition	•	•	·	•	·	70
	10.2. Vibrating Rod	·	•	•	•	·	75
	10.5. Kemarks	•	•	•	•	•	75
11.	Johann II Bernoulli (1736)						77
	11.1 December 10-1-1						77
	11.1. Pressure wave	·	•	·	·	•	80
		•	•	•	·	•	00
12.	Daniel Bernoulli (1739; 1740)				·		83
	12.1. Floating Body						83
	12.2. Remarks						88
	12.3. Dangling Rod		•			•	89
	12.4. Remarks on Superposition	•	•	•	·	•	91
12	Danial Parnovili (1742)						0.2
15.	$Damer Bernoum (1742) \dots \dots \dots \dots \dots$	·	•	·	·	·	93
	13.1. Vibrating Rod		•	•	•		94
	13.2. Absolute Frequency and Experiments	•	•	•	•	•	99
	13.3. Superposition	•	·	•	•	•	102
14.	Euler (1742)						104
	14.1. Linked Compound Pendulum						104
	14.2. Dangling Rod and Weighted Chain	•	•	•	•	•	107
15.	Johann Bernoulli (1742)	•	•	•	•	•	110
	15.1. One Degree of Freedom	•	•		•	•	110
	15.2. Dangling Rod	•	•	•	•	·	111
	15.3. Linked Pendulum I	•	•	•	•	•	114
	15.4. Linked Pendulum II	•	•	•	•	•	121

Appendix: Daniel Bernoulli's Papers on the Hanging	
Chain and the Linked Pendulum	123
Theoremata de Oscillationibus Corporum	125
De Oscillationibus Filo Flexili Connexorum	142
Theorems on the Oscillations of Bodies	156
On the Oscillations of Bodies Connected by a Flexible Thread	168
Bibliography	177
Index	182