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Preface

Is there a role for mathematics in the era of data science, and if so, what is it? In the natural
sciences, the unreasonable effectiveness of mathematics [45] came from its ability to create new
concepts that correspond to hidden structures in nature, and to capture essential features of com-
plex phenomena with simple, almost skeletal models with amazing predictive skills. As modern
science has come to rely more and more on data, mathematicians have been building bridges
between the data and the underlying reality via mathematical models that were then validated
on the data. As data began to have a life of their own, without the need of being an expression
of an underlying object in a framework of a model, they became themselves the object of inter-
est. Within this new data paradigm, mathematics play a big role when it comes to summarizing
data sets, detecting latent structures, and extracting specific information from the data. As new
data-driven applications show the unreasonable effectiveness of data [14], the contribution of
mathematicians to the data science world continues to grow, and a more clearly defined profile
of the mathematics of data science has begun to emerge.

This book is on the mathematics of data science, and thus the mathematical perspective will
shape the presentation of the material, without forgetting the data science driver behind it. The
coupling between mathematics and data science is highlighted in every chapter, with the excep-
tion of the first one, where we provide a brief review of linear algebra. Some concepts in data
science keep reappearing in different contexts, like recurring themes around which different al-
gorithms are designed. The three dominating data science themes that will be studied from a
mathematical perspective in this book are data reduction and visualization, clustering, and clas-
sification.

Data science can be approached from different, complementary directions. Many popular
and successful techniques in data analysis are rooted in statistics, a discipline with the tradition
of considering data as the object of intrinsic interest. There are a number of data science books
that look at the field from a statistical point of view; see, e.g., [16]. In this book we take an
alternative approach, based for the most part, but not solely, on linear algebra, without pursuing
the corresponding, more common, statistical interpretation. This choice has been motivated by
the desire for a consistent, concise, and coherent narrative, and to highlight different uses of
mathematics, especially linear algebra, in data science. In line with this choice of perspective,
whenever possible we will organize the data in the form of vectors and assemble them as the
columns of the data matrix, favoring a treatment in linear algebraic terms. We will leverage
the close connection with linear algebra to interpret and visualize the data geometrically. While
linear algebra has a prominent role in this book, some of the algorithms that we will consider do
not have a natural linear algebra formulation, relying instead on some optimization techniques
that will be introduced as needed.

The material in this book can be used for a one-semester course for advanced undergraduates
or beginning graduate students. Readers with a solid linear algebra background may skip Chap-
ter 1, which provides a brief linear algebra refresher, presenting a collection of definitions and
results needed later. Readers who are less familiar with linear algebra might find this material

vii
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helpful, and, moreover, it will establish the notation for the subsequent chapters. Ideally, this
book will enable the reader to implement from scratch all the algorithms, thus having the ability
to customize as desired. To facilitate the implementation part, we have interspersed the presen-
tation with segments of the MATLAB code that was used to test the algorithms and produce the
graphics. The choice of using MATLAB as a reference language arises from its close affinity
with the notions of linear algebra, acknowledging that in modern data science, languages like R,
Python, and Julia have a prominent role.

Chapter 2 is dedicated to the principal component analysis (PCA) of a data set. The singular
value decomposition being the backbone of PCA means that there is a strong mathematical and
linear algebraic foundation behind the PCA algorithm. In this chapter we highlight two different,
important uses of this method. Often PCA is used to detect the effective dimensionality of data
sets that may live in subspaces of high-dimensional spaces, and the PCA algorithm provides a
natural way to find a lower-dimensional representation of the data, or to find the best low-rank
approximation of the data. While providing a reduction in the number of parameters needed to
describe each data point, PCA also finds feature vectors that summarize the aggregate of the data
and are ranked in terms of decreasing importance. This may be a convenient way to get a sense
of the data set as a whole. Another important use of PCA is to visualize high-dimensional data by
projecting them onto the directions of maximum spread. This is used throughout the remainder
of the book as the default visualization tool. In many applications, preprocessing of the data is
carried out by PCA, motivating our decision to make this the first data science algorithm to be
considered.

In Chapter 3, we discuss two basic clustering algorithms: the classic k-means algorithm
and a modification known as the k-medoids algorithm. These algorithms, whose mathematical
underpinning is not nearly as strong as for the PCA, let the data organize themselves into clusters,
or classes, without providing any external guidelines about the grouping. For this reason, the k-
means and k-medoids algorithms are examples of nonsupervised learning methods. Since the
data may or may not naturally separate into clusters, the mathematical theory backing these
algorithms is to some extent guided by heuristic considerations. Since searching for natural
clusters is often one of the first tasks when dealing with a new data set and these are some of the
most popular methods for doing it, it is important to understand their merits and limitations.

Chapter 4 continues on the theme of data clustering by presenting an algorithm for finding
the directions along which clusters in the data are most clearly seen. In this case we assume
that the data have been partitioned into k classes, and that an annotation recording the class
of each data point is available. The algorithm, known as linear discriminant analysis (LDA),
finds those directions in space where the projections of each cluster in the data is as compact
as possible and the different clusters are maximally separated. Once these directions have been
determined, they can be used to visualize high-dimensional data in lower-dimensional spaces,
with the maximization of the separation of the clusters as the main criterion. The LDA algorithm
is formulated as an eigenvalue problem, and the separating directions are further analyzed for
suitably reducing the dimensionality of the data.

The theme of understanding the structure and internal organization of data that cannot be
visualized directly continues in Chapter 5. The idea behind the self-organizing maps (SOM)
algorithm is to approximate high-dimensional data with a set of prototype vectors connected by
a neighborhood structure that is described in terms of a low- (one- or two-)dimensional lattice.
The topological relations among the prototypes provided by the lattice are preserved as they
experience the data one point at a time and distribute themselves to capture their organization.
In this chapter we present the details of the SOM algorithm and show a few different ways to
interpret the prototypes and their way of capturing the organization of the data.

Chapter 6 addresses the problem of summarizing and representing data sets where all the
data components, or attributes, are nonnegative numbers, in a way that respects the structure
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of the data. The nonnegative matrix factorization (NMF) addresses this problem, providing an
approximation of each data vector as the linear combination with nonnegative coefficients of
feature vectors with nonnegative entries. In NMF the data are described in terms of prototypes
that also are nonnegative, thus readily interpretable in the terms originally used to describe the
data. While a rank k NMF factorization of the data cannot be a better approximation than a rank
k PCA approximation, in the latter the orthogonality of the feature vector prevents them normally
from being nonnegative. Therefore, when preserving the nonnegativity in the data representation
is important, NMF is superior to PCA. In both cases, the feature vectors can provide a quick
summary of the aggregated data, and in NMF they are amenable to the same interpretation as the
original data.

In Chapter 7 we begin addressing the classification problem by building elementary classi-
fiers inspired by some of the algorithms introduced in the previous chapters. This will lead to
the k-nearest neighbor algorithm, PCA and LDA classifiers, and the learning vector quantifier
(LVQ). These methods are referred to as supervised learning algorithms because they use train-
ing sets with the data partitioned into classes with known annotations to instruct the algorithm.
Methods to test and evaluate the performance of classification algorithm are also introduced.

Data science has been very helpful in the study of large corpora, that is, data sets comprising
text documents. Chapter 8 presents data science techniques specifically developed for text files.
Preprocessing text documents is an important step: After pruning from the documents stop words
that add nothing to the context, and reducing words to the stems from which they originate, the
corpus is represented numerically as a term-document matrix with nonnegative entries. At this
point, given a query, retrieval algorithms are used to subdivide the data set into the two classes
of relevant and nonrelevant documents. Data science methods for sets of images are presented
in Chapter 9, where we focus especially on how to handle texture images. The preprocessing of
images to represent them in a unified framework is very important. For black-and-white images,
we coarsen the representation by limiting the range of the gray scale, then compute the gray level
co-occurrence matrix (GLCM), which allows us to represent each image as a k × k matrix of
nonnegative entries regardless of the original size or shape of the image. At this point, methods
for numerical data sets can be applied.

In Chapter 10 we look at the popular tree-based classifiers and their extensions: random tree
and random forest algorithms. Tree classifiers are very popular because of the relative simplicity
of the algorithm, which ultimately can be reduced to a string of yes/no answers. The advantage
of them is also their high interpretability. This chapter, which is less mathematically based than
the previous ones, has been included for completeness and to acknowledge the popularity of the
method.

Chapter 11 discusses a widely used binary classification algorithm, the support vector ma-
chine (SVM). The algorithm relies on quadratic optimization tools with constraints. We have
included a short section on primal-dual methods and convex optimization, restricted to the spe-
cial case needed to implement the algorithm. Of particular interest is the kernel extension of
the algorithm which adds a significant amount of flexibility beyond the original SVM algorithm
looking for linear separators.

Chapter 12 is dedicated to the page ranking, in particular the algorithm known as PageRank.
This algorithm, where linear algebra gets the lion’s share of the merit, opens the way towards
network analysis and random processes in networks. We decided to present the page ranking
algorithm last because, unlike the methods of the earlier chapters, it does not provide generic
and useful tools to analyze any given data set, yet it is a method that every data-oriented applied
mathematician—and every web searcher—should know. After all, this is the driver behind the
success of some of the most successful web search engines!

The selection of topics excludes some popular algorithms in data science such as the various
versions of neural networks. A solid mathematical theory of neural networks is still emerging,
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and delving into the details, including understanding the role of the architecture and underlying
optimization methods, requires another type of approach.

At the end of each chapter, we have some notes and comments for readers who are interested
in reading more about the material. Acknowledging the fact that data science applications keep
growing and expanding, practice exercises have not been included as part of the book, but are
posted and periodically updated at https://bookstore.siam.org/di01/bonus, including resources
for implementation in Python.

The final form of this book greatly profited from the feedback from the students who took our
Mathematics of Data Science course at Case Western Reserve University in the past decade, at
the University of Naples “Federico II” in the spring of 2018 and 2019, and at Milan Polytechnic
University in 2019. Many thanks to them, and to the three anonymous reviewers whose many
suggestions helped us improve the presentation of the material.

https://bookstore.siam.org/di01/bonus
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