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Foreword

This book focuses on exactly treatable many'-body problems. This class

does not include most physical problems. We are therefore reminded "of

the story of the man who, returning home late at night after an alcoholic

evening, was scanning the ground for his key under a lamppost; he knew,
to be sure, that he had dropped it somewhere else, but only under the

lamppost was there enough light to conduct a proper searcW' <C71>. Yet

we feel the interest for such models is nowadays sufficiently widespread
- because of their beauty, their mathematical relevance and their multi-

farious applicative potential - that no apologies need be made for our

choice. In any case, whoever undertakes to read this book will know from

its title what she is in for!

Yet this title may require some explanations: a gloss of it (including
its extended version, see inside front cover) follows.

By "Classical" we mean nonquantal and nonrelativistic (although
some consider the Ruijsenaars-Schneider models, which are indeed

treated in this book, as relativistic versions of, previously known, nonre-

lativistic models; see below): our presentation is mainly focussed on

many-body systems of point particles whose time evolution is determined

by Newtonian equations of motion (acceleration proportional to force).
The fact that we treat problems not only in one, but also in two, and even

in three (and occasionally in an arbitrary number of), dimensions, is of

course somewhat of a novelty: indeed the treatment of two-dimensional,
and especially three-dimensional, (rotation-invariant!) models, is based

on recent (sometimes very recent) findings. By "amenable to exact treat-

ments" we mean that, to investigate the behavior of the many-body mod-

els identified and studied in this book, significant progress can be made

by "exacf' (i. e., not approximate) techniques. The extent to which one

can thereby master the detailed behavior of these many-body systems
varies from case to case: this is emphasized by the parenthetical part of

our title, which perhaps requires some additional elaboration, to explain
what we mean by our distinction - which is, to be sure, a heuristic one:

quite useful, but not quite precise - among solvable, integrable and line-

arizable models.

Solvable models are characterized by the availability of a technique of

solution which requires purely algebraic operations (such as inverting or

diagonalizing finite matrices, or finding the zeros of known polynomials),
and/or possibly solving known (generally linear, possibly nonautono-
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mous) ODEs in terms of known special functions (say, of hypergeometric

type), and/or perhaps the inversion of known functions (as in the standard

solution by quadratures).
Integrable models are those for which some approach (for instance, a

"Lax-pair", see below) is. available, which yields an adequate supply of

constants of motion. As a rule these models are also solvable, but gener-

ally this requires more labor. In the Hamiltonian cases, these models are

generally Liouville integrable.
Thirdly, we refer to linearizable problems: their treatment generally

requires, in addition to the operations mentioned above in the context of

solvable models, the solution of linear, generally nonautonomous, ODEs,

which, in spite of their being generally rather simple, might indeed give
rise to quite complicated (chaotic?) motions. In the Hamiltonian cases

these many-body models need not be integrable in the Liouville sense,

although the linearity of the equations to be finally solved entails the pos-

sibility to introduce constants of the motion via the superposition princi-

ple, which guarantees that the general solution of a linear ODE can be

represented as a linear combination with constant coefficients of an ap-

propriate set of specific solutions. In any case a linearizable many-body

problem is certainly much easier to treat than the generic (nonlinear!)
many-body problem, inasmuch as its solution can be reduced to solving a

linear first-order matrix ODE (indeed, in most cases, a single linear sec-

ond-order scalar ODE - albeit a nonautonomous one - see below).
Clearly these three categories of problems - solvable, integrable,

linearizable - are ordered in terms of increasing difficulty, so that (as in-

deed the title of this book indicates with its andlor's), problems belonging
to a lower category generally also belong to the following one(s).

But let us reemphasize that the distinction among solvable, integrable
and linearizable models is imprecise: the boundaries among these catego-
ries are somewhat blurred, moreover we have been vague about what

gasolving" a problem really means: Finding the general solution? Solving
the initial-value problem? For which class of initial data? And what about

boundary conditions (which in some cases are essential to define the

problem)? The final dots in the title underline the heuristic, and incom-

plete, character of this distinction among solvable, integrable and lineari-

zable models (for instance, we shall also introduce below the notion of

partially solvable models, whose initial-value problem can be solved only
for a restricted subclass of initial data). Yet this distinction is convenient

to convey synthetically the status of the various many-body problems
treated in this book.

Two additional remarks.

(i). The genesis of exactly treatable models comes seldom from the

discovery of a technique to solve a given problem; generally the actual

development is the other way round, a suitable technique is exploited to
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discover all the models which can be treated (possibly solved) by it.

Some disapprove of such an approach to research, in which, rather than

trying to find the solution of a problem, one tries to find problems that fit

a known (technique of) solution. Some, indeed, go as far as decrying "ba-

sic research," presumably because, in contrast to applied research, it does

not solve specific problems: "Basic research is like shooting an arrow

into the air and, where it lands, painting a targef' (attributed to Homer

Adkins (1984) <APS99>). This author, on the contrary, does not see

anything wrong with this approach; it seems to me it is a normal way of

making progress in science. For instance: occasionally an experimental
device (say, a particle accelerator) is built for the specific purpose to dis-

cover something (say, a new elementary particle); but more often an ex-

perimental device is available (say, a particle accelerator), and the ex-

perimental activity is concentrated on whatever that particular device al-

lows experimenters to do. And nobody sees anything wrong in this. In-

deed there is a quotation from Carl Jacobi (which I am lifting from a clas-

sical treatise by Vladimir Arnold <A74>), that expresses this point of

view in a context quite close to that of this book (although it refers spe-

cifically to an approach -- separation of variables -- we do not explicitly
treat): "Ihe main difficulty to integrate these differential equations is to

find the appropriate change of variables. There is no rule to discover it.

Hence we need to follow the inverse path, namely to introduce some con-

venient change of variables and investigate to which problems it can be

successfully applied." And another quotation which expresses a point of

view I sympathize with comes from Vladimir E. Zakharov: "A mathema-

tician, using the dressing method to find a new integrable system, could

be compared with a fisherman, plunging his net into the sea. He does not

know what a fish he will pull out. He hopes to catch a goldfish, of course.

But too often his catch is something that could not be used for any known

to him purpose. He invents more and more sophisticated nets and equip-
ments and plunges all that deeper and deeper. As a result he pulls on the

shore after a hard work more and more strange creatures. He should not

despair, nevertheless. The strange creatures may be interesting enough if

you are not too pragmatic. And who knows how deep in the sea do gold-
fishes live? ". <Z90>

(ii). Models amenable to exact treatments are, of course, special. Why
focus on them, rather than look at general cases, which capture many

more problems, including the more "physical" ones? But again, this is to

a large extent the essence of normal science. Pythagora' s theorem does

not hold for all triangles, but only for rectangular ones. Should this be

considered a shortcoming of this mathematical result, or instead its very
essence? The answer is plain.
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Finally, a few remarks on the presentation and the selection of the

material.

The presentation is meant to facilitate the self-education of a reader

who wishes to enter this research area. For instance, special cases are of-

ten presented in place or in advance of more general treatments, in order

to introduce ideas and techniques in a simpler context. The division into a

main text and a secondary part, separated by horizontal lines and distin-

guished by a slight difference in the size of the fonts, should also be help-
ful: in the secondary part we generally segregate remarks and arguments

(often including proofs) which deviate from the main flow of the presen-

tation (but the reader is well advised to read sequentially through these

parts as well, which often contain material that is essential -- or at least

helpful -- for the understanding of what follows; and this advise also ap-

plies to all exercises, which should all be read, even when there is no in-

tention/possibility to invest immediately time in their solution). Almost

all mentions of related references, historical remarks, due credits, etc., are

also relegated elsewhere, to special sections ("Notes") located at the end

of the chapters and of some appendices. Of course this book might also

be used as background material for teaching a course (it actually emerged
from such a context - indeed, it profited from such a test) .

The selection of the material presented in this book is unashamedly
skewed towards research topics to which the author has personally con-

tributed, or which he finds particularly congenial (such as the Rui-

jsenaars-Schneider model). The enormous amount of research on the

topics treated in this book and/or on closely related areas that emerged in

the last quarter century would have anyway doomed to failure any effort

at providing a "complete" coverage; likewise any attempt to present a

"complete" bibliographic record of the contributions on the topics treated

would have been impossible, indeed perhaps futile given the great ease

nowadays to retrieve relevant references via computer-assisted searches.

These are admittedly lame excuses for the shortcomings of this book,
whose worth (be it somewhat positive or largely negative) will in any

case be best assessed by those who will use it as a (personal or didactic)
teaching tool; but I like to express here my apologies to all those col-

leagues who contributed importantly to the development of this area of

research and who will not find in this book any reference to their contri-

bution.

The organization of the book into a rather detailed net of telescoped
sections is meant to help the reader, both the first time he navigates
through the book as well as when she might wish to retrieve some notion.

Moreover, the table of contents provides a synthetic overview of the ma-

terial covered in this book which might help the perplexed browser in de-

ciding whether he wishes to become an engaged, or even a diligent,
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reader. Equations are numbered progressively within each section and

appendix: equation (16) of Section 2.1.1 is referred to as (16) within that

section, as (2.1.1.46) elsewhere; and likewise (C.-10b) is equation (10b)
of Appendix C (but within Appendix C it is referred to simply as (10b)).

Let me end this Foreword on a personal note. My father, Guido Calo-

gero, was a philosopher who wrote many books (without formulas!), and

he also had a great interest for, and much scholarship in, philology and

archaeology (especially texts from ancient Greece). Hence, he always
paid a keen attention to the appearance of any text; and he much disliked

misprints. I inherited this attitude, but not his keen eye to weed out imper-
fections. Hence I must apologize for the many misprints and other defects

this book certainly contains, and beg the reader to take the same benevo-

lent attitude displayed by Hermann Weyl in his 1938 review <W38> of

the second volume of the classic mathematical physics treatise by Richard

Courant and David Hilbert <CH37>, when he wrote: "The author apolo-
gizes that lack of time prevented him from fitting out this book with a fall

sized index of literature and such paraphernalia. The same reason may be

responsible for quite a few misprints on which the reader will occasion-

ally stumble. But perhaps even these minor faults deserve praise rather

than blame. Although I know that a craftsman's pride should be in having
his work as perfect and shipshape as possible, even in the most minute

and inessential details, I sometimes wonder whether we do not lavish on

the dressing-up of a book too much time that would better go into more

important things."

Yet I will be most grateful to whoever will take the trouble to bring to

my attention shortcomings of this book (including misprints!), via an e-mail'

message sent to (both) these addresses: francesco.calojzero(c .uniromal.i

francesco.caloaero(-a romal.infn.it.
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Preface

This book, as well as its title, are long, perhaps too long; and it took quite
a long time to complete this project, well over three years of intense hard

work. Throughout this period I sought and got advise from several col-

leagues and friends, and also from students to whom preliminary drafts

were distributed and who helped me by spotting misprints and mistakes

(letting them search for these turned indeed out to be a very efficient

teaching technique!). For a special word of thanks I like to mention Mario

Bruschi, Jean-Pierre Franqoise, David Gomez Ullarte, Misha Olshanet-

sky, Orlando Ragnisco, Simon Ruijsenaars. But it is of course understood

that I am solely responsible for all shortcomings of this book.

I also wish to thank: Alessandra Grussu and Matteo Sommacal for

transforming my scribbled first draft into WORD files for me to work on;

my Physics Department at the University of Rome I "La Sapienza" for

supporting financially this typing job, and in particular the Administrator

of my Department, Maria Vittoria Marchet, for organizing this arrange-

ment, and the Director of my Department, Francesco Guerra, for encour-

aging me to undertake this project; and the staff at Springer, in particular
Mrs. Brigitte Reichel-Mayer respectively Prof. Wolf Beiglboeck, for their

cooperative attitude on the technical respectively substantive aspects of

the production of this book.

This book is dedicated to the memory of Juergen Moser, whose semi-

nal work was instrumental in opening up this field of research. Most re-

grettably, I never managed to meet him: I only spoke by telephone with

him one time, more than twenty years ago, from JFK airport in New

York, while he was in his office at the Courant Institute; then, through the

years, various last minutes glitches postponed more than once our getting
together. Alas, now it is too late to remedy this mistake.

September 2000 Francesco Calogero
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