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DER ZWEIFLER 

Irruner wenn uns 
Die Antwort auf eine Frage gefunden schien 
Loste einer von uns an der Wand die Schnur der alten 
AufgeroHten chinesischen Leinwand, so daB sie herabfiel und 
Sichtbar wurde der Mann auf der Bank, der 
So sehr zweifelte. 

Ich, sagte er uns 
Bin der Zweifter, ich zweifte, ob 
Die Arbeit gelungen ist, die eure Tage verschlungen hat. 
Ob was ihr gesagt, auch schlechter gesagt, noch fUr einige Wert hatte. 
Ob ihr es aber gut gesagt und euch nicht etwa 
Auf die Wahrheit verlassen babt dessen, was ihr gesagt habt. 
Ob es nicht vieldeutig ist, flir jeden moglichen Irrtum 
Tragt ihr die Schuld. Es kann auch eindeutig sein 
Und den Widerspruch aus den Dingen entfemen; ist es zu eindeutig? 
Dann ist es unbrauchbar, was ihr sagt. Euer Ding ist dann leblos. 
Seid ihr wirklich im FluB des Geschehens? Einverstanden mit 
AHem, was wird? Werdet ihr noch? Wer seid ihr? Zu wem 
Sprecht ihr? Wem nutzt es, was ihr da sagt? Und nebenbei: 
LiiBt es auch nuchtem? 1st es am Morgen zu lesen? 
1st es auch angeknupft an Vorhandenes? Sind die Slitze, die 
Vor euch gesagt sind, benutzt, wenigstens widerlegt? 1st alles belegbar? 
Durch Erfahrung? Durch welche? Aber vor allem 
Immer wieder vor allem andern: Wie handelt man 
Wenn man euch glaubt, was ihr sagt? Vor aHem: Wie handelt man? 

Nachdenklich betrachteten wir mit Neugier den zweifelnden 
Blauen Mann auf der Leinwand, sahen uns an und 
Begannen von vorne. 

BERTOLT BRECHT 



Preface 

The algorithmic solution of problems has always been one of the major concerns 
of mathematics. For a long time such solutions were based on an intuitive notion 
of algorithm. It is only in this century that metamathematical problems have led 
to the intensive search for a precise and sufficiently general formalization of the 
notions of computability and algorithm. 

In the 1930s, a number of quite different concepts for this purpose were pro
posed, such as Turing machines, WHILE-programs, recursive functions, Markov 
algorithms, and Thue systems. All these concepts turned out to be equivalent, a 
fact summarized in Church's thesis, which says that the resulting definitions form 
an adequate formalization of the intuitive notion of computability. This had and 
continues to have an enormous effect. First of all, with these notions it has been 
possible to prove that various problems are algorithmically unsolvable. Among 
these undecidable problems are the halting problem, the word problem of group 
theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, 
concepts like Turing machines and WHILE-programs had a strong influence on the 
development of the first computers and programming languages. 

In the era of digital computers, the question of finding efficient solutions to 
algorithmically solvable problems has become increasingly important. In addition, 
the fact that some problems can be solved very efficiently, while others seem 
to defy all attempts to find an efficient solution, has called for a deeper under
standing of the intrinsic computational difficulty of problems. This has resulted 
in the development of complexity theory. Complexity theory has since become 
a very diversified area of research. Each branch uses specific models of compu
tation, like Turing machines, random access machines, Boolean circuits, straight
line programs, computation trees, or VLsI-models. Every computation in such a 
model induces costs, such as the number of computation steps, the amount of 
memory required, the number of gates of a circuit, the number of instructions, 
or the chip area. Accordingly, studies in computational complexity are generally 
based on some model of computation together with a complexity measure. For an 
overview, we refer the interested reader to the Handbook o/Theoretical Computer 
Science [321], which contains several surveys of various branches of complexity 
theory. 

In this book we focus on Algebraic Complexity Theory, the study of the intrinsic 
algorithmic difficulty of algebraic problems within an algebraic model of computa-
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tion. Motivated by questions of numerical and symbolic computation, this branch 
of research originated in 1954 when Ostrowski [403] inquired about the optimality 
of Horner's rule. Algebraic complexity theory grew rapidly and has since become 
a well-established area of research. (See the surveys of von zur Gathen [189], Grig
oriev [210], Heintz [241], SchOnhage [462], and Strassen [506, 510].) However, 
with the exception of the now classic monograph by Borodin and Munro [65], 
published in 1975, a systematic treatment of this theory is not available. 

This book is intended to be a comprehensive text which presents both tradi
tional material and recent research in algebraic complexity theory in a coherent 
way. Requiring only some basic algebra and offering over 350 exercises, it should 
be well-suited as a textbook for beginners at the graduate level. With its extensive 
bibliographic notes covering nearly 600 research papers, it might also serve as a 
reference book. 

The text provides a uniform treatment of algebraic complexity theory on the 
basis of the straight-line program and the computation tree models, with special 
emphasis on lower complexity bounds. This also means that this is not a book 
on Computer Algebra, whose main theme is the design and implementation of 
efficient algorithms for algebraic problems. 

Nonetheless, our book contains numerous algorithms, typically those that are 
essentially optimal within the specified computation model. Our main goal is to 
develop methods for proving the optimality of such algorithms. 

To emphasize the logical development of the subject, we have divided the book 
into five parts, with 21 chapters in total. The first chapter consists of an informal 
introduction to algebraic complexity theory. 

The next two chapters form PART I: FUNDAMENTAL ALGORITHMS. Chapter 2 is 
concerned with efficient algorithms for the symbolic manipulation of polynomi
als and power series, such as the SchOnhage-Strassen algorithm for polynomial 
multiplication, the Sieveking-Kung algorithm for the inversion of power series, or 
the Brent-Kung algorithm for the composition of power series. It is followed by 
a chapter in which the emphasis lies on efficient algorithms within the branching 
model. In particular, we present the fast Knuth-SchOnhage algorithm for comput
ing the greatest common divisor (GCD) of univariate polynomials. This algorithm 
combined with Huffman coding then yields efficient solutions of algorithmic prob
lems associated with Chinese remaindering. Furthermore the VC-dimension and 
the theory of epsilon nets are used to show that certain NP-complete problems, 
like the knapsack or the traveling salesman problem, may be solved by "nonuni
form polynomial time algorithms" in the computation tree model over the reals. 
This surprising and important result, due to Meyer auf der Heide, demonstrates 
that it is not possible to prove exponential lower bounds for the above problems 
in the model of computation trees. Moreover, it stresses the role of uniformity in 
the definition of the language class NP and, at the same time, puts emphasis on 
the quality of several lower bounds derived later in Chapter 11. 
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While the first three chapters rely on the reader's intuitive notion of algorithm, 
the remaining parts of the book, directed towards lower bounds, call for an exact 
specification of computation models and complexity measures. 

Therefore, in PART II: ELEMENTARY LOWER BOUNDS (Chapters 4-7), we first 
introduce the models of straight-line programs and computation trees, which we 
use throughout the rest of the book. We then describe several elementary lower 
bound techniques. Chapter 5 contains transcendence degree arguments, including 
results of Motzkin and Belaga as well as the Baur-Rabin theorem. Chapter 6 
discusses a unified approach to Pan's substitution method and its extensions. The 
methods of Chapters 5 and 6 yield lower bounds which are at most linear in the 
number of input variables. Nonetheless, the methods are strong enough to show the 
optimality of some basic algorithms, the most prominent being Homer's rule. In 
Chapter 7 we introduce two fundamental program transformation techniques. The 
first is Strassen's technique of "avoiding divisions." The second is a method for 
transforming a program for the computation of a multivariate rational function into 
one which computes the given function and all its first-order partial derivatives. 
The results of Chapter 7 are of importance in Chapters 8, 14, and 16. 

PART III: HIGH DEGREE (Chapters 8-12) shows that concepts from algebraic 
geometry and algebraic topology, like the degree or Betti numbers, can be applied 
to prove nonlinear lower complexity bounds. Chapter 8 studies Strassen's degree 
bound, one of the central tools for obtaining almost sharp lower complexity bounds 
for a number of problems of high degree, like the computation of the coefficients 
of a univariate polynomial from its roots. Chapter 9 is devoted to the investiga
tion of specific polynomials that are hard to compute. It may be considered as a 
counterpart to Chapters 5 and 6 where we study generic polynomials. In Chap
ter 10 the degree bound is adapted to the computation tree model. With this tool it 
turns out that the Knuth-SchOnhage algorithm is essentially optimal for computing 
the Euclidean representation. In Chapter 11 Ben-Or's lower complexity bound for 
semi-algebraic membership problems is deduced from the Milnor-Thorn bound. 
This is applied to several problems of computational geometry. In Chapter 12 
the Grigoriev-Risler lower bound for the additive complexity of univariate real 
polynomials is derived from Khovanskii' s theorem on the number of real roots of 
sparse systems of polynomial equations. 

PART IV: Low DEGREE (Chapters 13-20) is concerned with the problem of com
puting a finite set of multivariate polynomials of degree at most two. In Chapter 13 
we discuss upper and lower complexity bounds for computing a finite set of linear 
polynomials, which is simply the task of multiplying a generic input vector by a 
specific matrix. This problem is of great practical interest, as the notable exam
ples of the discrete Fourier transform (DFD, Toeplitz, Hankel and Vandermonde 
matrices indicate. 

The theory of bilinear complexity is concerned with the problem of computing 
a finite set of bilinear polynomials. Chapters 14-20 contain a thorough treatment 
of this theory and can be regarded as a book within a book. Chapter 14 intro
duces the framework of bilinear complexity theory and is meant as a prerequisite 
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for Chapters 15-20. The language introduced in Chapter 14 allows a concise dis
cussion of the matrix multiplication methods in Chapter 15, such as Strassen's 
original algorithm and the notion of rank, Bini-Capovani-Lotti-Romani's concept 
of border rank, Schonhage's '['-theorem, as well as Strassen's laser method, and 
its tricky extension by Coppersmith and Winograd. Chapter 16 shows that several 
problems in computational linear algebra are about as hard as matrix multipli
cation, thereby emphasizing the key role of the matrix multiplication problem. 
Chapter 17 discusses Lafon and Winograd's lower bound for the complexity of 
matrix multiplication, and its generalization by Alder and Strassen. Moreover, in 
Chapter 18 we study a relationship, observed by Brockett and Dobkin, between 
the complexity of bilinear maps over finite fields and a well-known problem of 
coding theory. Partial solutions to the latter lead to interesting lower bounds, some 
of which are not known to be valid over infinite fields. This chapter also discusses 
the Chudnovsky-Chudnovsky interpolation algorithm on algebraic curves which 
yields a linear upper complexity bound for the multiplication in finite fields. 

The bilinear complexity or rank of bilinear problems can be reformulated in 
terms of tensors, resulting in a generalization of the usual matrix rank. In Chap
ter 19 tensorial rank is investigated for special classes of tensors, while Chapter 20 
is devoted to the study of the rank of "generic" tensors. In the language of al
gebraic geometry this problem is closely related to computing the dimension of 
higher secant varieties to Segre varieties. 

PART V: COMPLETE PROBLEMS (Chapter 21) presents Valiant's nonuniform alge
braic analogue of the P versus NP problem. It builds a bridge both to the theory 
of NP- and #P-completeness as well as to that part of algebraic complexity theory 
which is based on the parallel computation model. 

A number of topics are not covered in this book; this is due to limitations of 
time and space, the lack of reasonable lower complexity bounds, as well as the fact 
that certain problems do not fit into the straight-line program or computation tree 
model. More specifically, our book treats neither computational number theory 
nor computational group and representation theory (cf. Cohen [117], Lenstra and 
Lenstra [326], Sims [484], Atkinson (ed.) [13], Lux and Pahlings [344], Finkelstein 
and Kantor (eds.) [172]). Also, we have not included a discussion of topics in 
computational commutative algebra like factorization and Grobner bases, nor do 
we speak about the complexity of first-order algebraic theories (cf. Becker and 
Weispfenning [34], Fitchas et al. [174], Heintz et al. [245], and Kaltofen [284, 
286]). We have also omitted a treatment of parallel and randomized algorithms 
(cf. von zur Gathen [186], Ja'Ja [268]). However, many of these topics have 
already been discussed in other books or surveys, as the given references indicate. 

Clearly, much is left to be done. We hope that our book will serve as a 
foundation for advanced research and as a starting point for further monographs 
on algebraic complexity theory. 

Ziirich, Bonn, and Berkeley 
June 1996 

P. Biirgisser· M Clausen· MA. Shokrollahi 
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Notes to the Reader 

This book is intended as a textbook as well as a reference book. One of the 
important principal features is the division of the material into the relatively large 
number of 21 chapters, which are each designed to enable quick acquaintance 
with a specific topic. Furthermore, we have subdivided each chapter into sections 
which often make widely differing demands on the reader. Almost every chapter 
starts at an undergraduate level and ends at a more advanced level. To facilitate 
the reader's orientation we have marked those sections with asterisks that are 
of a rather technical nature and may be skipped on a first reading. To provide 
easy checks on the reader's comprehension of the text, or to challenge her/his 
proficiency, we have included numerous exercises in each chapter, the harder 
ones carrying asterisks. Many of the exercises are important results in their own 
right and are occasionally referred to in later sections. A list of open problems as 
well as the detailed notes at the end of each chapter should be seen not only as 
incentives for researchers willing to improve the present knowledge, but also as 
landmarks pointing to the frontiers of our field. 

We believe that the structure of the book facilitates its use in many ways. 
Generally, all readers interested in lower complexity bounds are expected to study 
the essential material of Sections 4.1-4.2, where we describe straight-line programs 
and introduce the notion of complexity. The language developed there will be 
used throughout the book. Thereafter, those whose primary inclination is to use 
this book as a reference source can directly traverse to their topic of interest. 

The rigorous presentation of many techniques for lower bound proofs in al
gebraic complexity theory calls not only for the use of tools from different areas 
of mathematics, but also for technicalities which often obscure the ideas behind 
those techniques. Whenever we have encountered such a situation, we have tried 
to familiarize the reader with the underlying ideas by means of examples of in
creasing difficulty. In so doing, we have designed a textbook for various possible 
courses. As an example of an introductory course on algebraic complexity theory, 
one can cover the topics presented in (1) (where (x) means "parts of Chapter x"), 
2,4.1-4.2, 5, 6, 7.2, 8.1. This course could be followed by an advanced course 
dealing with the content of (1), 4.4-4.5, 3.1-3.2, 8.2-8.5, 10.1-10.2, 11. A special 
course on bilinear complexity could include (1),4.1-4.2, 14, 15.1-15.8, 17.1-17.3, 
19.1-19.2. A special course on the Degree Bound might consist of (1), (2), (4), 
7.2,8.2-8.4,3.1-3.2, 10.1-10.2, (11). 



XVI Notes to the Reader 

Isolated chapters of our book can be used by people from other disciplines 
as complementary material to courses in their own field of research. Examples 
of this include courses on NP-completeness + (21), coding theory + (18), group 
representation theory + (13), computational geometry + (11), algebraic number 
theory + 9.1-9.3, and numerical analysis + (5, 6, 7, 8, 16). Courses in computer 
algebra can obviously be accompanied by a treatment of several of the lower 
complexity bounds discussed in this book. In addition, there is also a number of 
(asymptotically) fast algorithms in Chapters 2,3,5, 13, and 15 that are of interest 
to computer algebraists. 
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