Grundlehren der mathematischen Wissenschaften 315

A Series of Comprehensive Studies in Mathematics

Editors
S.S. Chern B. Eckmann P. de la Harpe
H. Hironaka F. Hirzebruch N. Hitchin
L. Hörmander M.-A. Knus A. Kupiainen
J. Lannes G. Lebeau M. Ratner D. Serre

Ya.G. Sinai N. J. A. Sloane J.Tits
M.Waldschmidt S.Watanabe

Managing Editors
M. Berger J. Coates S.R.S. Varadhan

Springer-Verlag Berlin Heidelberg GmbH

Peter Bürgisser
Michael Clausen
M. Amin Shokrollahi

Algebraic Complexity Theory

With the Collaboration of Thomas Lickteig

With 21 Figures

Peter Bürgisser
Institut für Mathematik
Abt. Angewandte Mathematik
Universität Zürich-Irchel
Winterthurerstraße 190
CH-8057 Zürich, Switzerland
buerg@amath.unizh.ch
Michael Clausen
Institut für Informatik V
Universität Bonn
Römerstraße 164
D-53117 Bonn, Germany
clausen@cs.uni-bonn.de

Mohammad Amin Shokrollahi
International Computer Science
Institute
1947 Center Street, Suite 600
Berkeley, CA 94704-1105, USA
and
Institut für Informatik V
Universität Bonn
Römerstraße 164
D-53117 Bonn, Germany
amin@icsi.berkeley.edu

By courtesy of the publisher, the poem "Der Zweifler" on page VII is reprinted from volume IV of Bertolt Brecht: Gesammelte Werke © Suhrkamp Verlag, Frankfurt am Main 1967.

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Bürgisser, Peter: Algebraic complexity theory / Peter Bürgisser; Michael Clausen; M. Amin Shokrollahi. With the collab. of Thomas Lickteig. - Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Milan; Paris; Santa Clara; Singapore; Tokyo: Springer 1997 (Grundlehren der mathematischen Wissenschaften; 315)

NE: Clausen, Michael:; Shokrollahi, Mohammad Amin:; GT

Mathematics Subject Classification (1991): 68Qxx, 05-xx, 14A10, ${ }_{14} \mathrm{P}_{10}, 15-\mathrm{xx}, 16 \mathrm{~A} 46,20 \mathrm{Cxx}, 60 \mathrm{Co5}, 65 \mathrm{Fxx}, 65 \mathrm{~T} 10$

ISBN 978-3-642-08228-3
ISBN 978-3-662-03338-8 (eBook)
DOI 10.1007/978-3-662-03338-8

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Softcover reprint of the hardcover 1st edition 1997
Cover design: MetaDesign plus GmbH, Berlin
Typesetting: Authors' input files edited and reformatted by Kurt Mattes, Heidelberg, using a Springer $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro-package
SPIN: $10521707 \quad 41 / 3143-543210$ Printed on acid-free paper

To

Brigitte
Claudia, Julia, Simone and Dorothe

Der Zweifler

Immer wenn uns

Die Antwort auf eine Frage gefunden schien
Löste einer von uns an der Wand die Schnur der alten
Aufgerollten chinesischen Leinwand, so daß sie herabfiel und
Sichtbar wurde der Mann auf der Bank, der
So sehr zweifelte.
Ich, sagte er uns
Bin der Zweifler, ich zweifle, ob
Die Arbeit gelungen ist, die eure Tage verschlungen hat.
Ob was ihr gesagt, auch schlechter gesagt, noch für einige Wert hätte.
Ob ihr es aber gut gesagt und euch nicht etwa
Auf die Wahrheit verlassen habt dessen, was ihr gesagt habt.
Ob es nicht vieldeutig ist, für jeden möglichen Irrtum
Tragt ihr die Schuld. Es kann auch eindeutig sein
Und den Widerspruch aus den Dingen entfernen; ist es zu eindeutig?
Dann ist es unbrauchbar, was ihr sagt. Euer Ding ist dann leblos.
Seid ihr wirklich im Fluß des Geschehens? Einverstanden mit Allem, was wird? Werdet ihr noch? Wer seid ihr? Zu wem
Sprecht ihr? Wem nützt es, was ihr da sagt? Und nebenbei:
Läßt es auch nüchtern? Ist es am Morgen zu lesen?
Ist es auch angeknüpft an Vorhandenes? Sind die Sätze, die
Vor euch gesagt sind, benutzt, wenigstens widerlegt? Ist alles belegbar?
Durch Erfahrung? Durch welche? Aber vor allem
Immer wieder vor allem andern: Wie handelt man
Wenn man euch glaubt, was ihr sagt? Vor allem: Wie handelt man?
Nachdenklich betrachteten wir mit Neugier den zweifelnden
Blauen Mann auf der Leinwand, sahen uns an und
Begannen von vorne.

Preface

The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm.

In the 1930s, a number of quite different concepts for this purpose were proposed, such as Turing machines, While-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among these undecidable problems are the halting problem, the word problem of group theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and While-programs had a strong influence on the development of the first computers and programming languages.

In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper understanding of the intrinsic computational difficulty of problems. This has resulted in the development of complexity theory. Complexity theory has since become a very diversified area of research. Each branch uses specific models of computation, like Turing machines, random access machines, Boolean circuits, straightline programs, computation trees, or Vlsi-models. Every computation in such a model induces costs, such as the number of computation steps, the amount of memory required, the number of gates of a circuit, the number of instructions, or the chip area. Accordingly, studies in computational complexity are generally based on some model of computation together with a complexity measure. For an overview, we refer the interested reader to the Handbook of Theoretical Computer Science [321], which contains several surveys of various branches of complexity theory.

In this book we focus on Algebraic Complexity Theory, the study of the intrinsic algorithmic difficulty of algebraic problems within an algebraic model of computa-
tion. Motivated by questions of numerical and symbolic computation, this branch of research originated in 1954 when Ostrowski [403] inquired about the optimality of Horner's rule. Algebraic complexity theory grew rapidly and has since become a well-established area of research. (See the surveys of von zur Gathen [189], Grigoriev [210], Heintz [241], Schönhage [462], and Strassen [506, 510].) However, with the exception of the now classic monograph by Borodin and Munro [65], published in 1975, a systematic treatment of this theory is not available.

This book is intended to be a comprehensive text which presents both traditional material and recent research in algebraic complexity theory in a coherent way. Requiring only some basic algebra and offering over 350 exercises, it should be well-suited as a textbook for beginners at the graduate level. With its extensive bibliographic notes covering nearly 600 research papers, it might also serve as a reference book.

The text provides a uniform treatment of algebraic complexity theory on the basis of the straight-line program and the computation tree models, with special emphasis on lower complexity bounds. This also means that this is not a book on Computer Algebra, whose main theme is the design and implementation of efficient algorithms for algebraic problems.

Nonetheless, our book contains numerous algorithms, typically those that are essentially optimal within the specified computation model. Our main goal is to develop methods for proving the optimality of such algorithms.

To emphasize the logical development of the subject, we have divided the book into five parts, with 21 chapters in total. The first chapter consists of an informal introduction to algebraic complexity theory.

The next two chapters form Part I: Fundamental Algorithms. Chapter 2 is concerned with efficient algorithms for the symbolic manipulation of polynomials and power series, such as the Schönhage-Strassen algorithm for polynomial multiplication, the Sieveking-Kung algorithm for the inversion of power series, or the Brent-Kung algorithm for the composition of power series. It is followed by a chapter in which the emphasis lies on efficient algorithms within the branching model. In particular, we present the fast Knuth-Schönhage algorithm for computing the greatest common divisor (GCD) of univariate polynomials. This algorithm combined with Huffman coding then yields efficient solutions of algorithmic problems associated with Chinese remaindering. Furthermore the VC-dimension and the theory of epsilon nets are used to show that certain NP-complete problems, like the knapsack or the traveling salesman problem, may be solved by "nonuniform polynomial time algorithms" in the computation tree model over the reals. This surprising and important result, due to Meyer auf der Heide, demonstrates that it is not possible to prove exponential lower bounds for the above problems in the model of computation trees. Moreover, it stresses the role of uniformity in the definition of the language class NP and, at the same time, puts emphasis on the quality of several lower bounds derived later in Chapter 11.

While the first three chapters rely on the reader's intuitive notion of algorithm, the remaining parts of the book, directed towards lower bounds, call for an exact specification of computation models and complexity measures.

Therefore, in Part II: Elementary Lower Bounds (Chapters 4-7), we first introduce the models of straight-line programs and computation trees, which we use throughout the rest of the book. We then describe several elementary lower bound techniques. Chapter 5 contains transcendence degree arguments, including results of Motzkin and Belaga as well as the Baur-Rabin theorem. Chapter 6 discusses a unified approach to Pan's substitution method and its extensions. The methods of Chapters 5 and 6 yield lower bounds which are at most linear in the number of input variables. Nonetheless, the methods are strong enough to show the optimality of some basic algorithms, the most prominent being Horner's rule. In Chapter 7 we introduce two fundamental program transformation techniques. The first is Strassen's technique of "avoiding divisions." The second is a method for transforming a program for the computation of a multivariate rational function into one which computes the given function and all its first-order partial derivatives. The results of Chapter 7 are of importance in Chapters 8,14 , and 16.

Part III: High Degree (Chapters $8-12$) shows that concepts from algebraic geometry and algebraic topology, like the degree or Betti numbers, can be applied to prove nonlinear lower complexity bounds. Chapter 8 studies Strassen's degree bound, one of the central tools for obtaining almost sharp lower complexity bounds for a number of problems of high degree, like the computation of the coefficients of a univariate polynomial from its roots. Chapter 9 is devoted to the investigation of specific polynomials that are hard to compute. It may be considered as a counterpart to Chapters 5 and 6 where we study generic polynomials. In Chapter 10 the degree bound is adapted to the computation tree model. With this tool it turns out that the Knuth-Schönhage algorithm is essentially optimal for computing the Euclidean representation. In Chapter 11 Ben-Or's lower complexity bound for semi-algebraic membership problems is deduced from the Milnor-Thom bound. This is applied to several problems of computational geometry. In Chapter 12 the Grigoriev-Risler lower bound for the additive complexity of univariate real polynomials is derived from Khovanskii's theorem on the number of real roots of sparse systems of polynomial equations.

Part IV: Low Degree (Chapters 13-20) is concerned with the problem of computing a finite set of multivariate polynomials of degree at most two. In Chapter 13 we discuss upper and lower complexity bounds for computing a finite set of linear polynomials, which is simply the task of multiplying a generic input vector by a specific matrix. This problem is of great practical interest, as the notable examples of the discrete Fourier transform (DFT), Toeplitz, Hankel and Vandermonde matrices indicate.

The theory of bilinear complexity is concerned with the problem of computing a finite set of bilinear polynomials. Chapters 14-20 contain a thorough treatment of this theory and can be regarded as a book within a book. Chapter 14 introduces the framework of bilinear complexity theory and is meant as a prerequisite
for Chapters 15-20. The language introduced in Chapter 14 allows a concise discussion of the matrix multiplication methods in Chapter 15, such as Strassen's original algorithm and the notion of rank, Bini-Capovani-Lotti-Romani's concept of border rank, Schönhage's τ-theorem, as well as Strassen's laser method, and its tricky extension by Coppersmith and Winograd. Chapter 16 shows that several problems in computational linear algebra are about as hard as matrix multiplication, thereby emphasizing the key role of the matrix multiplication problem. Chapter 17 discusses Lafon and Winograd's lower bound for the complexity of matrix multiplication, and its generalization by Alder and Strassen. Moreover, in Chapter 18 we study a relationship, observed by Brockett and Dobkin, between the complexity of bilinear maps over finite fields and a well-known problem of coding theory. Partial solutions to the latter lead to interesting lower bounds, some of which are not known to be valid over infinite fields. This chapter also discusses the Chudnovsky-Chudnovsky interpolation algorithm on algebraic curves which yields a linear upper complexity bound for the multiplication in finite fields.

The bilinear complexity or rank of bilinear problems can be reformulated in terms of tensors, resulting in a generalization of the usual matrix rank. In Chapter 19 tensorial rank is investigated for special classes of tensors, while Chapter 20 is devoted to the study of the rank of "generic" tensors. In the language of algebraic geometry this problem is closely related to computing the dimension of higher secant varieties to Segre varieties.

Part V: Complete Problems (Chapter 21) presents Valiant's nonuniform algebraic analogue of the \mathbf{P} versus NP problem. It builds a bridge both to the theory of NP- and \#P-completeness as well as to that part of algebraic complexity theory which is based on the parallel computation model.

A number of topics are not covered in this book; this is due to limitations of time and space, the lack of reasonable lower complexity bounds, as well as the fact that certain problems do not fit into the straight-line program or computation tree model. More specifically, our book treats neither computational number theory nor computational group and representation theory (cf. Cohen [117], Lenstra and Lenstra [326], Sims [484], Atkinson (ed.) [13], Lux and Pahlings [344], Finkelstein and Kantor (eds.) [172]). Also, we have not included a discussion of topics in computational commutative algebra like factorization and Gröbner bases, nor do we speak about the complexity of first-order algebraic theories (cf. Becker and Weispfenning [34], Fitchas et al. [174], Heintz et al. [245], and Kaltofen [284, 286]). We have also omitted a treatment of parallel and randomized algorithms (cf. von zur Gathen [186], Ja'Ja [268]). However, many of these topics have already been discussed in other books or surveys, as the given references indicate.

Clearly, much is left to be done. We hope that our book will serve as a foundation for advanced research and as a starting point for further monographs on algebraic complexity theory.

Leitfaden

Notes to the Reader

This book is intended as a textbook as well as a reference book. One of the important principal features is the division of the material into the relatively large number of 21 chapters, which are each designed to enable quick acquaintance with a specific topic. Furthermore, we have subdivided each chapter into sections which often make widely differing demands on the reader. Almost every chapter starts at an undergraduate level and ends at a more advanced level. To facilitate the reader's orientation we have marked those sections with asterisks that are of a rather technical nature and may be skipped on a first reading. To provide easy checks on the reader's comprehension of the text, or to challenge her/his proficiency, we have included numerous exercises in each chapter, the harder ones carrying asterisks. Many of the exercises are important results in their own right and are occasionally referred to in later sections. A list of open problems as well as the detailed notes at the end of each chapter should be seen not only as incentives for researchers willing to improve the present knowledge, but also as landmarks pointing to the frontiers of our field.

We believe that the structure of the book facilitates its use in many ways. Generally, all readers interested in lower complexity bounds are expected to study the essential material of Sections 4.1-4.2, where we describe straight-line programs and introduce the notion of complexity. The language developed there will be used throughout the book. Thereafter, those whose primary inclination is to use this book as a reference source can directly traverse to their topic of interest.

The rigorous presentation of many techniques for lower bound proofs in algebraic complexity theory calls not only for the use of tools from different areas of mathematics, but also for technicalities which often obscure the ideas behind those techniques. Whenever we have encountered such a situation, we have tried to familiarize the reader with the underlying ideas by means of examples of increasing difficulty. In so doing, we have designed a textbook for various possible courses. As an example of an introductory course on algebraic complexity theory, one can cover the topics presented in (1) (where (x) means "parts of Chapter x "), $2,4.1-4.2,5,6,7.2,8.1$. This course could be followed by an advanced course dealing with the content of (1), 4.4-4.5, 3.1-3.2, 8.2-8.5, 10.1-10.2, 11. A special course on bilinear complexity could include (1), 4.1-4.2, 14, 15.1-15.8, 17.1-17.3, 19.1-19.2. A special course on the Degree Bound might consist of (1), (2), (4), 7.2, 8.2-8.4, 3.1-3.2, 10.1-10.2, (11).

Isolated chapters of our book can be used by people from other disciplines as complementary material to courses in their own field of research. Examples of this include courses on NP-completeness $+(21)$, coding theory $+(18)$, group representation theory + (13), computational geometry $+(11)$, algebraic number theory $+9.1-9.3$, and numerical analysis $+(5,6,7,8,16)$. Courses in computer algebra can obviously be accompanied by a treatment of several of the lower complexity bounds discussed in this book. In addition, there is also a number of (asymptotically) fast algorithms in Chapters 2, 3, 5, 13, and 15 that are of interest to computer algebraists.

Acknowledgments

Our greatest intellectual debt is to V. Strassen for his many contributions to the field of algebraic complexity theory as well as for his brilliant lectures which introduced the subject to us. Special thanks go to our cooperator Thomas Lickteig who, together with us, first planned this book more than five years ago. His competence in this field has always been of extreme benefit to us. We owe thanks to W. Baur whose clear and concise lecture notes helped us a lot in writing this book.

We are indebted to Ch. Bautz, F. Bigdon, A. Björner, K. Kalorkoti, F. Mauch, M. Nuesken, T. Recio, H. J. Stoß, V. Strassen and Ch. Zengerling for reading parts of the manuscript and their valuable suggestions for improvements. We have benefited from the help of U. Baum, S. Blackburn, J. Buhler, E. Kaltofen, H. MeierReinhold, A. McNeil, J. Neubüser, A. Schönhage, and F. Ulmer and would like to express our gratitude to them. We also thank our students at the Universities of Bonn and Zürich for their attention and stimulating questions.

Although this book has been proofread by several people, we take complete responsibility for the errors that may have remained.

Many people, too numerous to mention, have contributed to our project by kindly sending to us a list of their publications relevant for our book. We thank them all very much.

We thank the Schweizerische Nationalfonds for its financial support which allowed the first author to stay at the University of Bonn in the first phase of our project from 1991 until 1993. Thanks go also to the Institute of Applied Mathematics of the University of Zürich for the pleasant working conditions which allowed an efficient continuation of the project after the first author had moved to Zürich.

We have extensively used Email and Internet, mostly after the first and third author had left Bonn for Zürich and Berkeley, respectively. Without these media, communication would have become much harder. Also, we have benefited a lot from the GNU project, in particular from the powerful Emacs-Editor distributed with the GNU-package. We take the opportunity to thank R. Stallman and his team for this public domain software of distinguished quality.

Without the document processing systems $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{I}_{\mathrm{E}} \mathrm{X}$ we would have had a very hard time. Many thanks to D. Knuth and L. Lamport for providing the community with their wonderful - and free - software. For the camera-ready preparation of this document we have used different style files written by B. Althen, M. Barr, and P. Taylor, whom we would like to thank.

We are especially grateful to the staff at Springer-Verlag Heidelberg for their editorial advise and great patience throughout this enterprise.

Finally, we wish to thank Brigitte, Claudia, and Dorothe for their support, patience, and understanding of the commitment necessary to write such a book.

Table of Contents

Chapter 1. Introduction 1
1.1 Exercises 20
1.2 Open Problems 23
1.3 Notes 23
Part I. Fundamental Algorithms
Chapter 2. Efficient Polynomial Arithmetic 27
2.1 Multiplication of Polynomials I 28
2.2* Multiplication of Polynomials II 34
2.3* Multiplication of Several Polynomials 38
2.4 Multiplication and Inversion of Power Series 44
2.5* Composition of Power Series 47
2.6 Exercises 53
2.7 Open Problems 57
2.8 Notes 58
Chapter 3. Efficient Algorithms with Branching 61
3.1 Polynomial Greatest Common Divisors 61
3.2* Local Analysis of the Knuth-Schönhage Algorithm 71
3.3 Evaluation and Interpolation 75
3.4* Fast Point Location in Arrangements of Hyperplanes 79
3.5* Vapnik-Chervonenkis Dimension and Epsilon-Nets 84
3.6 Exercises 90
3.7 Open Problems 97
3.8 Notes 98
Part II. Elementary Lower Bounds
Chapter 4. Models of Computation 103
4.1 Straight-Line Programs and Complexity 103
4.2 Computation Sequences 109
4.3* Autarky 111
4.4* Computation Trees 113
4.5* Computation Trees and Straight-line Programs 118
4.6 Exercises 121
4.7 Notes 124
Chapter 5. Preconditioning and Transcendence Degree 125
5.1 Preconditioning 125
5.2 Transcendence Degree 130
5.3* Extension to Linearly Disjoint Fields 134
5.4 Exercises 136
5.5 Open Problems 142
5.6 Notes 142
Chapter 6. The Substitution Method 143
6.1 Discussion of Ideas 144
6.2 Lower Bounds by the Degree of Linearization 148
6.3* Continued Fractions, Quotients, and Composition 151
6.4 Exercises 157
6.5 Open Problems 159
6.6 Notes 159
Chapter 7. Differential Methods 161
7.1 Complexity of Truncated Taylor Series 161
7.2 Complexity of Partial Derivatives 164
7.3 Exercises 167
7.4 Open Problems 168
7.5 Notes 168
Part III. High Degree
Chapter 8. The Degree Bound 171
8.1 A Field Theoretic Version of the Degree Bound 171
8.2 Geometric Degree and a Bézout Inequality 178
8.3 The Degree Bound 182
8.4 Applications 186
8.5* Estimates for the Degree 192
8.6* The Case of a Finite Field 195
8.7 Exercises 198
8.8 Open Problems 205
8.9 Notes 205
Chapter 9. Specific Polynomials which Are Hard to Compute 207
9.1 A Generic Computation 207
9.2 Polynomials with Algebraic Coefficients 211
9.3 Applications 218
9.4* Polynomials with Rapidly Growing Integer Coefficients 224
9.5* Extension to other Complexity Measures 230
9.6 Exercises 236
9.7 Open Problems 243
9.8 Notes 243
Chapter 10. Branching and Degree 245
10.1 Computation Trees and the Degree Bound 245
10.2 Complexity of the Euclidean Representation 248
10.3* Degree Pattern of the Euclidean Representation 253
10.4 Exercises 260
10.5 Open Problems 263
10.6 Notes 264
Chapter 11. Branching and Connectivity 265
11.1* Estimation of the Number of Connected Components 265
11.2 Lower Bounds by the Number of Connected Components 272
11.3 Knapsack and Applications to Computational Geometry 275
11.4 Exercises 278
11.5 Open Problems 282
11.6 Notes 283
Chapter 12. Additive Complexity 287
12.1 Introduction 287
12.2* Real Roots of Sparse Systems of Equations 289
12.3 A Bound on the Additive Complexity 296
12.4 Exercises 298
12.5 Open Problems 300
12.6 Notes 301
Part IV. Low Degree
Chapter 13. Linear Complexity 305
13.1 The Linear Computational Model 305
13.2 First Upper and Lower Bounds 309
13.3* A Graph Theoretical Approach 314
13.4* Lower Bounds via Graph Theoretical Methods 318
13.5* Generalized Fourier Transforms 326
13.6 Exercises 345
13.7 Open Problems 348
13.8 Notes 348
Chapter 14. Multiplicative and Bilinear Complexity 351
14.1 Multiplicative Complexity of Quadratic Maps 351
14.2 The Tensorial Notation 357
14.3 Restriction and Conciseness 361
14.4 Other Characterizations of Rank 365
14.5 Rank of the Polynomial Multiplication 367
14.6* The Semiring \mathcal{T} 368
14.7 Exercises 370
14.8 Open Problems 373
14.9 Notes 373
Chapter 15. Asymptotic Complexity of Matrix Multiplication 375
15.1 The Exponent of Matrix Multiplication 375
15.2 First Estimates of the Exponent 377
15.3 Scalar Restriction and Extension 381
15.4 Degeneration and Border Rank 384
15.5 The Asymptotic Sum Inequality 389
15.6 First Steps Towards the Laser Method 391
15.7* Tight Sets 396
15.8 The Laser Method 401
15.9* Partial Matrix Multiplication 407
15.10* Rapid Multiplication of Rectangular Matrices 411
15.11 Exercises 412
15.12 Open Problems 419
15.13 Notes 420
Chapter 16. Problems Related to Matrix Multiplication 425
16.1 Exponent of Problems 425
16.2 Triangular Inversion 427
16.3 LUP-decomposition 428
16.4 Matrix Inversion and Determinant 430
16.5* Transformation to Echelon Form 431
16.6* The Characteristic Polynomial 435
16.7* Computing a Basis for the Kernel 439
16.8* Orthogonal Basis Transform 441
16.9* Matrix Multiplication and Graph Theory 445
16.10 Exercises 447
16.11 Open Problems 451
16.12 Notes 452
Chapter 17. Lower Bounds for the Complexity of Algebras 455
17.1 First Steps Towards Lower Bounds 455
17.2 Multiplicative Complexity of Associative Algebras 463
17.3* Multiplicative Complexity of Division Algebras 470
17.4* Commutative Algebras of Minimal Rank 474
17.5 Exercises 481
17.6 Open Problems 484
17.7 Notes 485
Chapter 18. Rank over Finite Fields and Codes 489
18.1 Linear Block Codes 489
18.2 Linear Codes and Rank 491
18.3 Polynomial Multiplication over Finite Fields 492
18.4* Matrix Multiplication over Finite Fields 494
18.5* Rank of Finite Fields 496
18.6 Exercises 498
18.7 Open Problems 502
18.8 Notes 502
Chapter 19. Rank of 2-Slice and 3-Slice Tensors 505
19.1 The Weierstraß-Kronecker Theory 505
19.2 Rank of 2-Slice Tensors 508
19.3* Rank of 3-Slice Tensors 512
19.4 Exercises 516
19.5 Notes 519
Chapter 20. Typical Tensorial Rank 521
20.1 Geometric Description 521
20.2 Upper Bounds on the Typical Rank 524
20.3* Dimension of Configurations in Formats 531
20.4 Exercises 534
20.5 Open Problems 536
20.6* Appendix: Topological Degeneration 536
20.7 Notes 539
Part V. Complete Problems
Chapter 21. P Versus NP: A Nonuniform Algebraic Analogue 543
21.1 Cook's Versus Valiant's Hypothesis 543
21.2 p-Definability and Expression Size 550
21.3 Universality of the Determinant 554
21.4 Completeness of the Permanent 556
21.5* The Extended Valiant Hypothesis 561
21.6 Exercises 569
21.7 Open Problems 574
21.8 Notes 574
Bibliography 577
List of Notation 601
Index 609

