Cambridge University Press 0521823293 - Approximation by Algebraic Numbers Yann Bugeaud Table of Contents More information

Contents

	Preface	<i>page</i> ix
	Frequently used notation	xiv
1	Approximation by rational numbers	1
1.1	Dirichlet and Liouville	1
1.2	Continued fractions	5
1.3	The theorem of Khintchine	12
1.4	The Duffin–Schaeffer Conjecture	18
1.5	Complementary results on continued fractions	19
1.6	Exercises	21
1.7	Notes	23
2	Approximation to algebraic numbers	27
2.1	Rational approximation	27
2.2	Effective rational approximation	29
2.3	Approximation by algebraic numbers	31
2.4	Effective approximation by algebraic numbers	33
2.5	Remarks on irrationality and transcendence statements	39
2.6	Notes	40
3	The classifications of Mahler and Koksma	41
3.1	Mahler's classification	42
3.2	Some properties of Mahler's classification	45
3.3	Koksma's classification	47
3.4	Comparison between both classifications	52
3.5	Some examples	61
3.6	Exponents of Diophantine approximation	62

vi	Contents	
3.7	Exercises	68
3.8	Notes	70
4	Mahler's Conjecture on S-numbers	74
4.1	Statements of the theorems	75
4.2	An auxiliary result	78
4.3	Proof of Theorem 4.3	80
4.4	Exercise	87
4.5	Notes	88
5	Hausdorff dimension of exceptional sets	90
5.1	Hausdorff measure and Hausdorff dimension	90
5.2	Upper bound for the Hausdorff dimension	93
5.3	The mass distribution principle	95
5.4	Regular systems	98
5.5	The theorem of Jarník–Besicovitch	103
5.6	Hausdorff dimension of sets of S^* -numbers	105
5.7	Hausdorff dimension of sets of S-numbers	110
5.8	Restricted Diophantine approximation	113
5.9	Exercises	114
5.10	Notes	117
6	Deeper results on the measure of exceptional sets	122
6.1	Optimal regular systems	123
6.2	A Khintchine-type result	125
6.3	Hausdorff dimension of exceptional sets	129
6.4	Hausdorff measure of exceptional sets	130
6.5	Sets with large intersection properties	130
6.6	Application to the approximation by algebraic numbers	131
6.7	Exercises	136
6.8	Notes	137
7	On <i>T</i> -numbers and <i>U</i> -numbers	139
7.1	<i>T</i> -numbers do exist	140
7.2	The inductive construction	141
7.3	Completion of the proof of Theorem 7.1	149
7.4	On the gap between w_n^* and w_n	151
7.5	Hausdorff dimension and Hausdorff measure	152
7.6	On U-numbers	153
7.7	A method of Güting	159

CAMBRIDGE

	Contents	vii
7.8	Brief summary of the results towards the Main Problem	161
7.9	Exercises	162
7.10	Notes	163
8	Other classifications of real and complex numbers	166
8.1	Sprindžuk's classification	166
8.2	Another classification proposed by Mahler	171
8.3	Transcendence measures and measures of algebraic	
	approximation	180
8.4	Exercises	184
8.5	Notes	188
9	Approximation in other fields	191
9.1	Approximation in the field of complex numbers	191
9.2	Approximation in the field of Gaussian integers	193
9.3	Approximation in the <i>p</i> -adic fields	194
9.4	Approximation in fields of formal power series	199
9.5	Notes	201
10	Conjectures and open questions	204
10.1	The Littlewood Conjecture	204
10.2	Open questions	206
10.3	Notes	217
	Appendix A Lemmas on polynomials	219
A.1	Definitions and useful lemmas	219
A.2	Liouville's inequality	222
A.3	Zeros of polynomials	227
A.4	Exercises	233
A.5	Notes	233
	Appendix B Geometry of numbers	235
	References	240
	Index	273

www.cambridge.org