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Preface 

This book is based on a course given at Cornell University and intended 
primarily for second-year graduate students. The purpose of the course was 
to introduce students who knew a little algebra and topology to a subject in 
which there is a very rich interplay between the two. Thus I take neither a 
purely algebraic nor a purely topological approach, but rather I use both 
algebraic and topological techniques as they seem appropriate. 

The first six chapters contain what I consider to be the basics of the subject. 
The remaining four chapters are somewhat more specialized and reflect my 
own research interests. For the most part, the only prerequisites for reading 
the book are the elements of algebra (groups, rings, and modules, including 
tensor products over non-commutative rings) and the elements of algebraic 
topology (fundamental group, covering spaces, simplicial and CW-com­
plexes, and homology). There are, however, a few theorems, especially in 
the later chapters, whose proofs use slightly more topology (such as the 
Hurewicz theorem or Poincare duality). The reader who does not have the 
required background in topology can simply take these theorems on faith. 

There are a number of exercises, some of which contain results which are 
referred to in the text. A few of the exercises are marked with an asterisk to 
warn the reader that they are more difficult than the others or that they require 
more background. 

I am very grateful to R. Bieri, J-P. Serre, U. StamJllbach, R. Strebel, and 
C. T. C. Wall for helpful comments on a preliminary version of this book. 
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Notational Conventions 

All rings (including graded rings) are assumed to be associative and to have an 
identity. The latter is required to be preserved by ring homomorphisms. 
Modules are understood to be left modules, unless the contrary is explicitly 
stated. Similarly, group actions are generally understood to be left actions. 

If a group G acts on a set X, I will usually write X/G instead of G\X for the 
orbit set, even if G is acting on the left. One exception to this concerns the 
notation for the set of cosets of a subgroup H in a group G. Here we are talking 
about the left or right translation action of H on G, and I will always be 
careful to put the H on the appropriate side. Thus G/H = {gH:g E G} and 
H\G = {Hg:geG}. 

A symbol such as 

L f(g) 
geGIH 

indicates that / is a function on G such that /(g) depends only on the coset gH 
of g; the sum is then taken over a set of coset representatives. 

Finally, I use the" topologists' notation" 

7!..n = 7!../n7!..; 

in particular, 7!..p denotes the integers mod p, not the p-adic integers. 
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