Graduate Texts in Mathematics 87

Editorial Board S. Axler F.W. Gehring P.R. Halmos

Springer

New York Berlin Heidelberg Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra.
- 5 MAC LANE. Categories for the Working
- Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C*-Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.

continued after index

Kenneth S. Brown

Cohomology of Groups

Kenneth S. Brown Department of Mathematics White Hall Cornell University Ithaca, NY 14853 U.S.A.

Editorial Board

S. Axler Department of Mathematics Michigan State University East Lansing, MI 48824 USA F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

Library of Congress Cataloging in Publication Data Brown, Kenneth S. Cohomology of groups. (Graduate texts in mathematics; 87) Bibliography: p. Includes index. 1. Groups, Theory of. 2. Homology theory. I. Title. II. Series. QA171.B876 512'.22 82-733 AACR2

© 1982 by Springer-Verlag New York Inc. All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the Mainland China only and not for export therefrom.

ISBN 978-1-4684-9329-0 ISBN 978-1-4684-9327-6 (eBook) DOI 10.1007/978-1-4684-9327-6

Preface

This book is based on a course given at Cornell University and intended primarily for second-year graduate students. The purpose of the course was to introduce students who knew a little algebra and topology to a subject in which there is a very rich interplay between the two. Thus I take neither a purely algebraic nor a purely topological approach, but rather I use both algebraic and topological techniques as they seem appropriate.

The first six chapters contain what I consider to be the basics of the subject. The remaining four chapters are somewhat more specialized and reflect my own research interests. For the most part, the only prerequisites for reading the book are the elements of algebra (groups, rings, and modules, including tensor products over non-commutative rings) and the elements of algebraic topology (fundamental group, covering spaces, simplicial and CW-complexes, and homology). There are, however, a few theorems, especially in the later chapters, whose proofs use slightly more topology (such as the Hurewicz theorem or Poincaré duality). The reader who does not have the required background in topology can simply take these theorems on faith.

There are a number of exercises, some of which contain results which are referred to in the text. A few of the exercises are marked with an asterisk to warn the reader that they are more difficult than the others or that they require more background.

I am very grateful to R. Bieri, J-P. Serre, U. Stammbach, R. Strebel, and C. T. C. Wall for helpful comments on a preliminary version of this book.

All rings (including graded rings) are assumed to be associative and to have an identity. The latter is required to be preserved by ring homomorphisms. Modules are understood to be *left* modules, unless the contrary is explicitly stated. Similarly, group actions are generally understood to be left actions.

If a group G acts on a set X, I will usually write X/G instead of $G \setminus X$ for the orbit set, even if G is acting on the left. One exception to this concerns the notation for the set of cosets of a subgroup H in a group G. Here we are talking about the left or right translation action of H on G, and I will always be careful to put the H on the appropriate side. Thus $G/H = \{gH: g \in G\}$ and $H \setminus G = \{Hg: g \in G\}$.

A symbol such as

$$\sum_{g \in G/H} f(g)$$

indicates that f is a function on G such that f(g) depends only on the coset gH of g; the sum is then taken over a set of coset representatives.

Finally, I use the "topologists' notation"

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z};$$

in particular, \mathbb{Z}_p denotes the integers mod p, not the *p*-adic integers.

Contents

Introduction	1
CHAPTER I Some Homological Algebra	
Some Homological Algebra	4
0. Review of Chain Complexes	4
1. Free Resolutions	10
2. Group Rings	12
3. G-Modules	13
4. Resolutions of \mathbb{Z} Over $\mathbb{Z}G$ via Topology	14
5. The Standard Resolution	18
6. Periodic Resolutions via Free Actions on Spheres	20
7. Uniqueness of Resolutions	21
8. Projective Modules	26
Appendix. Review of Regular Coverings	31
CHAPTER II	
The Homology of a Group	33
1. Generalities	33
2. Co-invariants	34
3. The Definition of H_*G	35
4. Topological Interpretation	36
5. Hopf's Theorems	41
6. Functoriality	48
7. The Homology of Amalgamated Free Products	49
Appendix. Trees and Amalgamations	52
CHAPTER III	
Homology and Cohomology with Coefficients	55
0. Preliminaries on \bigotimes_{G} and Hom_{G}	55
1. Definition of $H_*(G, M)$ and $H^*(G, M)$	56

vii

viii

2.	Tor and Ext	60
3.	Extension and Co-extension of Scalars	62
4.	Injective Modules	65
5.	Induced and Co-induced Modules	67
6.	H_{\star} and H^{\star} as Functors of the Coefficient Module	71
7.	Dimension Shifting	74
8.	H_{\star} and H^{\star} as Functors of Two Variables	78
9.	The Transfer Map	80
10.	Applications of the Transfer	83

CHAPTER IV

Low Dimensional Cohomology and Group Extensions		86
1.	Introduction	86
2.	Split Extensions	87
3.	The Classification of Extensions with Abelian Kernel	91
4.	Application: p-Groups with a Cyclic Subgroup of Index p	97
5.	Crossed Modules and H^3 (Sketch)	102
6.	Extensions With Non-Abelian Kernel (Sketch)	104

CHAPTER V

Products	107
1. The Tensor Product of Resolutions	107
2. Cross-products	108
3. Cup and Cap Products	109
4. Composition Products	114
5. The Pontryagin Product	117
6. Application: Calculation of the Homology of an Abelian Group	121

CHAPTER VI

Cohomology Theory of Finite Groups	128
1. Introduction	128
2. Relative Homological Algebra	129
3. Complete Resolutions	131
4. Definition of \hat{H}^*	134
5. Properties of \hat{H}^*	136
6. Composition Products	142
7. A Duality Theorem	144
8. Cohomologically Trivial Modules	148
9. Groups with Periodic Cohomology	153

CHAPTER VII	
Equivariant Homology and Spectral Sequences	161
1. Introduction	161
2. The Spectral Sequence of a Filtered Complex	161

Double Complexes	164
Example: The Homology of a Union	166
Homology of a Group with Coefficients in a Chain Complex	168
Example: The Hochschild-Serre Spectral Sequence	171
Equivariant Homology	172
Computation of d^1	175
	178
Equivariant Tate Cohomology	180
	Example: The Homology of a Union Homology of a Group with Coefficients in a Chain Complex Example: The Hochschild-Serre Spectral Sequence Equivariant Homology

CHAPTER VIII Finiteness Conditions

Finiteness Conditions	183
1. Introduction	183
2. Cohomological Dimension	184
3. Serre's Theorem	190
4. Resolutions of Finite Type	191
5. Groups of Type FP _n	197
6. Groups of Type FP and FL	199
7. Topological Interpretation	205
8. Further Topological Results	210
9. Further Examples	213
10. Duality Groups	219
11. Virtual Notions	225

CHAPTER IX Euler Characteristics

Euler Characteristics	230
1. Ranks of Projective Modules: Introduction	230
2. The Hattori-Stallings Rank	231
3. Ranks Over Commutative Rings	235
4. Ranks Over Group Rings; Swan's Theorem	239
5. Consequences of Swan's Theorem	242
6. Euler Characteristics of Groups: The Torsion-Free Case	246
7. Extension to Groups with Torsion	249
8. Euler Characteristics and Number Theory	253
9. Integrality Properties of $\chi(\Gamma)$	257
10. Proof of Theorem 9.3; Finite Group Actions	258
11. The Fractional Part of $\chi(\Gamma)$	261
12. Acyclic Covers; Proof of Lemma 11.2	265
13. The <i>p</i> -Fractional Part of $\chi(\Gamma)$	266
14. A Formula for $\chi_{\Gamma}(\mathscr{A})$	270

273
273
273
277

 4. Equivariant Farrell Cohomology 5. Cohomologically Trivial Modules 6. Groups with Periodic Cohomology 7. Ĥ*(Γ) and the Ordered Set of Finite Subgroups of Γ 	281 287 288 291
References	295
Notation Index	301
Index	303