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Preface 

This is a textbook suitable for a year-long course in analysis at the ad
vanced undergraduate or possibly beginning-graduate level. It is intended 
for students with a strong background in calculus and linear algebra, and 
a strong motivation to learn mathematics for its own sake. At this stage 
of their education, such students are generally given a course in abstract 
algebra, and a course in analysis, which give the fundamentals of these two 
areas, as mathematicians today conceive them. 

Mathematics is now a subject splintered into many specialties and sub
specialties, but most of it can be placed roughly into three categories: al
gebra, geometry, and analysis. In fact, almost all mathematics done today 
is a mixture of algebra, geometry and analysis, and some of the most in
teresting results are obtained by the application of analysis to algebra, say, 
or geometry to analysis, in a fresh and surprising way. What then do these 
categories signify? Algebra is the mathematics that arises from the ancient 
experiences of addition and multiplication of whole numbers; it deals with 
the finite and discrete. Geometry is the mathematics that grows out of 
spatial experience; it is concerned with shape and form, and with measur
ing, where algebra deals with counting. Analysis might be described as the 
mathematics that deals with the ideas of the infinite and the infinitesimal; 
more specifically, it is the word used to describe the great web of ideas 
that has grown in the last three centuries from the discovery of the differ
ential and integral calculus. Its basic arena is the system of real numbers, 
a mathematical construct which combines algebraic concepts of addition, 
multiplication, etc., with the geometric concept of a line, or continuum. 

There is no general agreement on what an introductory analysis course 
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should include. I have chosen four major topics: the calculus of functions 
of one variable, treated with modern standards of rigor; an introduction 
to general topology, focusing on Euclidean space and spaces of functions; 
the general theory of integration, based on the concept of measure; and the 
calculus, differential and integral, for functions of several variables, with 
the inverse and implicit function theorems, and integration over manifolds. 
Inevitably, much time and effort go into giving definitions and proving 
technical propositions, building up the basic tools of analysis. I hope the 
reader will feel this machinery is justified by some of its products displayed 
here. The theorems of Dirichlet, Liouville, Weyl, Brouwer, and Riemann's 
Dirichlet principle for harmonic functions, for instance, should need no 
applications to be appreciated. (In fact, they have a great number of ap
plications. ) 

An ideal book of mathematics might uphold the standard of economy 
of expression, but this one does not. The reader will find many repetitions 
here; where a result might have been proved once and subsequently referred 
to, I have on occasion simply given the old argument again. My justification 
is found in communications theory, which has shown mathematically that 
redundancy is the key to successful communication in a noisy channel. I 
have also on occasion given more than one proof for a single theorem; this 
is done not because two proofs are more convincing than one, but because 
the second proof involves different ideas, which may be useful in some new 
context. 

I have included some brief notes, usually historical, at the end of each 
chapter. The history is all from secondary sources, and is not to be relied 
on too much, but it appears that many students find these indications of 
how things developed to be interesting. A student who wants to learn the 
material in the early chapters of this book from a historical perspective will 
find Bressoud's recent book [1] quite interesting. 

While this book is meant to be used for a year-long course, I myself have 
never managed to include everything here in such a course. A year and a 
half might be reasonable, for students with no previous experience with 
rigorous analysis. In different years, I have omitted different topics, always 
regretfully. Every topic treated here meets one of two tests: it is either 
something that everybody should know, or else it is just too beautiful to 
leave out. Nevertheless, life is short, and the academic year even shorter, 
and anyone who teaches with this book should plan on leaving something 
out. I expect that most teachers who use this book might also be tempted 
to include some topic that I have not treated, or develop further some 
theme that is touched on lightly here. 

Those students whose previous mathematical experience is mostly with 
calculus are in for some culture shock. They will notice that this book is 
only about 30% as large as their calculus text, and contains about one-tenth 
as many exercises. (So far, so good.) But it will quickly become clear that 
some of the problems are quite demanding; I believe that (certainly at this 
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level) more is learned by spending hours, if necessary, on a few problems, 
sometimes a single problem, than in routinely dispatching a dozen exercises, 
all following the same pattern. I hope the reader is not discouraged by 
difficulty, but rewarded by difficulty overcome. 

This book consists of theorems, propositions, and lemmas (these words 
all mean the same thing), along with definitions and examples. Most of 
these are set off formally as Theorem, Proposition, etc., but some defini
tions, examples, and theorems are in fact sneaked into the text between the 
formally announced items. I have been persuaded to number the Theorems, 
Examples, Definitions, etc. by one sequence. Thus Example 4.4 refers to 
the fourth item in Chapter 4, where an item could be either a Theorem, 
Proposition, Lemma, Definition, or Example. It would have been more log
ical to have it refer to the fourth example in this chapter, but it would have 
made navigation more difficult. 

One of the important things that one learns in a course at this level is 
how to write a mathematical proof. It is quite difficult to prescribe what 
constitutes a proper proof. It should be a clear and compelling argument, 
that forces a reader (who has accepted previous theorems and understands 
the hypotheses) to accept its assertions. It should be concise, but not cryp
tic; it should be detailed, but not verbose. We learn to do it by imitating 
models. Here are two models from ancient Greece. Throughout this book, 
the symbol I will mark the conclusion of a proof. 

Theorem. There are infinitely many primes. 

Proof. If Pl, P2, ... ,Pn are primes, let N = P1P2 ... Pn + 1. Then N is not 
divisible by any Pj, j = 1,2, ... , n, so either N is a prime, or N is divisible 
by some prime other than Pl, P2, ... ,Pn. In either case, there are at least 
n + 1 primes. I 

Note that this proof assumes a knowledge of what a prime number is, 
and a previously obtained result that every integer N > 1 is divisible by 
some prime. Note also that the last sentence of the proof has been omitted. 
It might be either to the effect that the hypothesis that the set of all primes 
can be listed in a finite sequence Pl, P2, ... ,Pn has led to a contradiction, 
or that we have given the recipe for finding a new prime for each natural 
number, so that the sequence 2, 3, 7, 43, ... , can be extended indefinitely. 

Theorem. The square on the hypotenuse of a right triangle is the sum of 
the squares on the two shorter sides. 

Proof. If the sides of the triangle are a, b, and c, with c the hypotenuse, 
then the square of side a + b can be dissected in two ways, as shown below. 
Removing the four copies of the triangle present in each dissection, the 
theorem follows. I 

This is one of the rare occasions when I would accept a picture as a 
proof. (Having once been shown the proof, by a carefully drawn diagram, 
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a 

a 

Figure 1. The Pythagorean Theorem. 

that every triangle is isosceles, I could never again believe that pictures 
don't lie.) In this argument, the picture is clear and convincing. By the way, 
there are few pictures in what follows, and they are all simple and hand
drawn, meant to serve as a guide to simple ideas that are (unfortunately 
but necessarily) being expressed in awkward or complicated notation. I 
would urge the readers (of this or any other mathematics) to make their 
own sketches at all times, preferably crude and schematic. 

Acknowledgments. It is impossible to list all the writers and individuals 
who have influenced me in the writing of this book, but for me the model 
of analysis textbooks at this level has always been Rudin's Principles of 
Mathematical Analysis [11]. The second half ofthis book (which was written 
first) was greatly influenced by Spivak's Calculus on Manifolds [13], the 
first clear and simple introduction to Stokes' theorem in its modern form. 
I was fortunate to read in manuscript Munkres' excellent book Analysis on 
Manifolds [10] while I was writing that earlier version, and profited from 
it. 

Many students found typographical errors and other infelicities in the 
class notes which formed the first version of the first half of the book, and 
I want to thank especially Andrew Brecher, Greg Friedman, Ezra Miller, 
and Max Minzner for their detailed examination, and their suggestions for 
that part. Eva Kallin made many useful criticisms of an earlier version of 
the notes on which the second half of this book is based. I am grateful 
to Xiang-Qian Chang, who read the entire manuscript, and pointed out a 
great number of rough places. 

The mistakes that remain are all my own. I would appreciate hearing 
about them. 

22 August 2000 
With this second printing, I have had the opportunity to correct a num

ber of typographical errors, infelicities, rough spots, and mistakes. I thank 
the following for pointing them out to me: William Beckner, Mark Bruso, 
Xiang-Qian Chang, Eva Kallin, Tom Koornwinder, and Mark McKee. 

A.B. 
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