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Preface 

This book is based on several courses given by the authors since 1966. It 
introduces the reader to the representation theory of compact Lie groups. 

We have chosen a geometrical and analytical approach since we feel 
that this is the easiest way to motivate and establish the theory and to indicate 
relations to other branches of mathematics. Lie algebras, though mentioned 
occasionally, are not used in an essential way. The material as well as its 
presentation are classical; one might say that the foundations were known to 
Hermann Weyl at least 50 years ago. 

Prerequisites to the book are standard linear algebra and analysis, 
including Stokes' theorem for manifolds. The book can be read by German 
students in their third year, or by first-year graduate students in the United 
States. 

Generally speaking the book should be useful for mathematicians with 
geometric interests and, we hope, for physicists. 

At the end of each section the reader will find a set of exercises. These vary 
in character: Some ask the reader to verify statements used in the text, some 
contain additional information, and some present examples and counter­
examples. We advise the reader at least to read through the exercises. 

The book is organized as follows. There are six chapters, each containing 
several sections. A reference of the form III, (6.2) refers to Theorem (Defi­
nition, etc.) (6.2) in Section 6 of Chapter III. The roman numeral is omitted 
whenever the reference concerns the chapter where it appears. References to 
the Bibliography at the end of the book have the usual form, e.g. Weyl [1]. 

Naturally, we would have liked to write in our mother tongue. But we 
hope that our English will be acceptable to a larger mathematical community, 
although any personal manner may have been lost and we do not feel 
competent judges on matters of English style. 



viii Preface 

Arunas Liulevicius, Wolfgang Liick, and Klaus Wirthmiiller have read 
the manuscript and suggested many improvements. We thank them for 
their generous help. We are most grateful to Robert Robson who translated 
part of the German manuscript and revised the whole English text. 
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