James G. Simmonds

A Brief on Tensor Analysis

Second Edition

With 28 Illustrations

James G. Simmonds Department of Applied Mathematics University of Virginia Charlottesville, VA 22903 USA

Editorial Board

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA K.A. Ribet
Mathematics Department
University of California
at Berkeley
Berkeley, CA 94720-3840
USA

Mathematics Subject Classification (2000): 15-01, 15A72

Library of Congress Cataloging-in-Publication Data Simmonds, James G.

A brief on tensor analysis / James G. Simmonds. — 2nd ed.

p. cm. — (Undergraduate texts in mathematics)

Includes index.

ISBN 978-1-4612-6424-8 ISBN 978-1-4419-8522-4 (eBook)

DOI 10.1007/978-1-4419-8522-4

1. Calculus of tensors. I. Title. II. Series.

QA433.S535 1994 515′.63—dc20

93-4693

Printed on acid-free paper.

© 1994 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1994 Softcover reprint of the hardcover 2nd edition 1994

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Bill Imbornoni; manufacturing supervised by Vincent Scelta. Typeset by Asco Trade Typesetting Ltd., Hong Kong.

9 8 7 6 5 4

SPIN 10773338

Contents

Preface to the Second Edition	vii
Preface to the First Edition	ix
CHAPTER I	
Introduction: Vectors and Tensors	1
Three-Dimensional Euclidean Space	3
Directed Line Segments	3
Addition of Two Vectors	4
Multiplication of a Vector v by a Scalar α	5
Things That Vectors May Represent	5
Cartesian Coordinates	6
The Dot Product	7
Cartesian Base Vectors	10
The Interpretation of Vector Addition	10
The Cross Product	11
Alternative Interpretation of the Dot and Cross Product. Tensors	15
Definitions	16
The Cartesian Components of a Second Order Tensor	17
The Cartesian Basis for Second Order Tensors	19
Exercises	20
CHAPTER II	
General Bases and Tensor Notation	25
General Bases	25
The Jacobian of a Basis Is Nonzero	27
The Summation Convention	27
	xiii

xiv Contents

Computing the Dot Product in a General Basis	28
Reciprocal Base Vectors	28
The Roof (Contravariant) and Cellar (Covariant) Components	
of a Vector	30
Simplification of the Component Form of the Dot Product in a	
General Basis	31
Computing the Cross Product in a General Basis	32
A Second Order Tensor Has Four Sets of Components in General	34
Change of Basis	36
Exercises	38
2.101.0100	30
CHAPTER III	
Newton's Law and Tensor Calculus	45
Rigid Bodies	45
New Conservation Laws	46
Nomenclature	47
Newton's Law in Cartesian Components	49
Newton's Law in Plane Polar Coordinates	50
The Physical Components of a Vector	51
The Christoffel Symbols	52
General Three-Dimensional Coordinates	54
Newton's Law in General Coordinates	55
Computation of the Christoffel Symbols	58
An Alternative Formula for Computing the Christoffel Symbols	59
A Change of Coordinates	62
Transformation of the Christoffel Symbols	64
Exercises	65
CHAPTER W	
CHAPTER IV The Gradient, the Del Operator, Covariant Differentiation,	
and the Divergence Theorem	71
-	/1
The Gradient	71
Linear and Nonlinear Eigenvalue Problems	75
The Del Operator	76
The Divergence, Curl, and Gradient of a Vector Field	77
The Invariance of $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$, and $\nabla \mathbf{v}$	78
The Covariant Derivative	79
The Component Forms of $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$, and $\nabla \mathbf{v}$	80
The Kinematics of Continuum Mechanics	81
The Divergence Theorem	83
Differential Geometry	87
Exercises	97
Index	107