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Introduction 

The purpose of this book is to describe the global properties of complete simply
connected spaces that are non-positively curved in the sense of A. D. Alexandrov and 
to examine the structure of groups that act properly on such spaces by isometries. 
Thus the central objects of study are metric spaces in which every pair of points can 
be joined by an arc isometric to a compact interval of the real line and in which every 
triangle satisfies the CAT(O) inequality. This inequality encapsulates the concept 
of non-positive curvature in Riemannian geometry and allows one to reflect the 
same concept faithfully in a much wider setting - that of geodesic metric spaces. 
Because the CAT(O) condition captures the essence of non-positive curvature so well, 
spaces that satisfy this condition display many of the elegant features inherent in the 
geometry of non-positively curved manifolds. There is therefore a great deal to be 
said about the global structure of CAT(O) spaces, and also about the structure of 
groups that act on them by isometries - such is the theme of this book. 

The origins of our study lie in the fundamental work of A. D. Alexandrov1. 

He gave several equivalent definitions of what it means for a metric space to have 
curvature bounded above by a real number K. Let us begin by explaining one of 
Alexandrov's definitions; this formulation has been given prominence by M. Gromov, 
who termed it the CAT(K) ineqUality. (The initial A is in honour of Alexandrov, and 
the initials C and T are in honour of E. Cartan and A. Toponogov, each of whom 
made an important contribution to the understanding of curvature via inequalities for 
the distance function.) 

Given a real number K , let M; denote the following space: if K < 0 then M; is real 
hyperbolic space 1H12 with the distance function scaled by a factor of 1/ ,J=K; if K = 0 
then M; is the Euclidean plane; if K > 0 then M; is the 2-sphere §2 with the metric 
scaled by a factor 1/.jK. Alexandrov pointed out that one could define curvature 
bounds on a space by comparing triangles in that space to triangles in M;. A natural 
class of spaces in which to study triangles is the following. A metric space X is called 
a geodesic space if every pair of points x, y E X can be joined by a continuous path 
of length d(x, y); the image of such a path is called a geodesic segment. In general 
there may be many geodesic segments joining x to y, but nevertheless it is convenient 
to use the notation [x, y] for a choice of such a segment. A geodesic triangle ~ in X 
consists of three points x, y, Z E X and three geodesic segments [x, y], [y, z], [z, x]. A 
comparison triangle for ~ in M; is a geodesic triangle ~ in M; with vertices X, y, Z 

1 In 1957 Alexandrov wrote an article summarizing his ideas [Ale57] 
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such that d(x, y) = d(X, y), d(y, z) = d(y, z) and d(z, x) = d(z, X). (If K ::: 0 then such 
a Ll always exists; if K > 0 then it exists provided the perimeter of Ll is less than 
2rr / ,.jK; in both cases it is unique up to an isometry of M;.) The point p E [x, y] is 
called a comparison point in Ll for p E [x, y] if d(x, p) = d(x, p). Comparison points 
on [y, z] and [z, x] are defined similarly. A geodesic space X is said to satisfy the 
CAT(K) inequality (more briefly, X is a CAT(K) space) if, for all geodesic triangles 
Ll in X, 

d(p, q) ::: d(p, (j) 

for all comparison points p, q E Ll ~ M;. 
Alexandrov defines a metric space to be of curvature ::: K if each point of the 

space has a neighbourhood which, equipped with the induced metric, is a CAT(K) 
space. He and the Russian school which he founded have made an extensive study of 
the local properties of such spaces. A complete Riemannian manifold has curvature 
::: K in the above sense if and only if all of its sectional curvatures are ::: K. The 
main point of making the above definition, though, is that there are many examples 
of spaces other than Riemannian manifolds whose curvature is bounded above. An 
interesting class of non-positively curved polyhedral complexes is provided by the 
buildings of Euclidean (or affine) type which arose in the work of Bruhat and Tits on 
algebraic groups. Many other examples will be described in the course of this book. 

In recent years, CAT( -1) and CAT(O) spaces have come to play an important 
role both in the study of groups from a geometrical viewpoint and in the proofs of 
certain rigidity theorems in geometry. This is due in large part to the influence of 
Mikhael Gromov. Of particular importance are the lectures which Gromov gave in 
February 1981 at College de France in Paris. In these lectures (an excellent account 
of which was written by Viktor Schroeder [BGS95]) Gromov explained the main 
features of the global geometry of manifolds of non-positive curvature, essentially 
by basing his account on the CAT(O) inequality. In the present book we shall pursue 
this approach further in order to describe the global properties of CAT(O) spaces and 
the structure of groups which act on them by isometries. Two particular features of 
our treatment are that we give very detailed proofs of the basic theorems, and we 
describe many examples. 

We have divided our book into three parts: Part I is an introduction to the geometry 
of geodesic spaces, in Part II the basic theory of spaces with upper curvature bounds 
is developed, and more specialized topics are covered in Part ill. We shall now 
outline the contents of each part. Before doing so, we should emphasize that many 
of the chapters can be read independently, and we therefore suggest that if you are 
particularly interested in the material from a certain chapter, then you should tum 
directly to that chapter. (References are given in the text whenever material from 
earlier chapters2 is needed.) 

2 We shall write (7.11) to direct readers to item 7.11 in the part of the book that they are 
reading, and (1.7.11) to direct readers to item 7.11 in Part I. The chapters in Part III are 
labelled by letters and subdivided into smaller sections, giving rise to references of the form 
(III.f.7.11). 
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In Part I we examine such basic concepts as distance (metric spaces), geodesics, 
the length of a curve, length (inner) metrics, and the notion of the (upper) angle 
between two geodesics issuing from the same point in a metric space. (This concept 
of angle, which is due to Alexandrov, plays an essential role throughout the book.) 
Part I also contains various examples of geodesic spaces. Of these, the most important 
are the model spaces M~, which we introduce in Chapter 1.2 and study further in 1.6. 
One can describe M~ as the complete, simply connected, Riemannian n-manifold of 
constant sectional curvature K. However, in keeping with the spirit of this book, we 
shall define M~ directly as a metric space and deduce the desired properties of the 
space and its group of isometries directly from this definition. 

We shall augment the supply of basic examples in Part I by describing several 
methods for constructing new examples of geodesic metric spaces out of more famil
iar ones: products, gluing, cones, sphericaljoins, quotients, induced path metrics and 
limits. Most of these constructions are due to Alexandrov and the Russian school. 
In Chapter 1.7 we shall describe the general properties of geometric complexes, as 
established by Bridson in his thesis. And in the final chapter of Part I we shall tum 
our attention to groups: after gathering some basic facts about group actions, we 
shall describe some of the basic ideas in geometric group theory. 

In Part II we set about our main task - exploring the geometry of CAT(K) 
spaces. We shall give several different formulations of the CAT(K) condition, all due 
to Alexandrov, and prove that they are equivalent. One quickly sees that CAT(K) 
spaces enjoy significant properties. For example, one can see almost immediately 
that in a complete CAT(O) space angles exist in a strong sense, the distance function is 
convex, every bounded set has a unique circumcentre, one has orthogonal projections 
onto closed convex subsets, etc. Early in Part II we shall also examine how CAT(K) 
spaces behave with regard to the basic constructions introduced in Chapter 1.5. 

Following these basic considerations, we tum our attention to a richer circle of 
ideas based on a key observation of Alexandrov: when considering a triangle ~ 
in a complete CAT(O) space X, if one gets any non-trivial equality in the CAT(O) 
condition, then ~ spans an isometrically embedded Euclidean triangle in X. This 
observation leads quickly to results concerning the existence of flat polygons and 
flat strips, and thence a product decomposition theorem. 

Much of the force and elegance of the theory of non-positively curved spaces 
rests on the fact that there is a local-to-global theorem which allows one to use 
local information about the space to make deductions about the global geometry 
of its universal cover and about the structure of groups which act by isometries 
on the universal cover. More precisely, we have the following generalization of 
the Cartan-Hadamard theorem: for K :::: 0, a complete simply-connected geodesic 
space satisfies the CAT(K) inequality locally if and only if it satisfies the CAT(K) 
inequality globally. (In Chapter 11.4, following a proof of Alexander and Bishop, 
we shall actually prove a more general statement concerning metric spaces whose 
metrics are locally convex.) 
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A more concise account of much of the material presented in Chapters 11.1-11.4 
and 11.8-11.9 of the present book can be found in the first two chapters of Ballmann's 
lecture notes [Ba95]. 

Even if one were ultimately interested only in CAT(O) spaces, there are aspects of 
the subject that force one to consider geodesic metric spaces satisfying the CAT(K) 
inequality for arbitrary K. An important link between CAT(O) spaces and CAT(l) 
spaces is provided by a theorem of Berestovskii, which shows that the Euclidean 
cone CoY over a geodesic space Y is a CAT(O) space if and only if Y is a CAT(l) 
space. (A similar statement holds with regard to the K-cone CK Y, where K is arbitrary.) 
This theorem is used in Chapter 11.5 to establish the link condition, a necessary and 
sufficient condition (highlighted by Gromov) which translates questions concerning 
the existence of CAT(O) metrics on polyhedral complexes into questions concerning 
the structure of links of vertices. The importance of the link condition is that in many 
circumstances (particularly in dimension two) it provides a practical method for 
deciding if a given complex supports a metric of non-positive curvature. Thus we are 
able to construct interesting examples. Two-dimensional complexes are a particularly 
rich source of examples, partly because the link condition is easier to check than 
in higher dimensions, but also because the connections between group theory and 
geometry are closest in dimension two, and in dimension two any subcomplex of a 
non-positively curved complex is itself non-positively curved. 

In Chapter 11.6 we begin our study of groups that act by isometries on CAT(O) 
spaces. First we establish basic properties of individual isometries and groups of 
isometries. Individual isometries are divided into three classes according to the be
haviour of their displacement functions. If the displacement function is constant then 
the isometry is called a Clifford translation. The Clifford translations of a CAT(O) 
space X form a pre-Hilbert space H, which is a generalization of the Euclidean de 
Rham factor in Riemannian geometry: if X is complete then there is an isometric 
splitting X = X' x H. We also show that the group of isometries of a compact 
non-positively curved space is a topological group with finitely many connected 
components, the component of the identity being a torus. 

In the early nineteen seventies, Gromoll-Wolf and Lawson-Yau proved several 
striking theorems concerning the structure of those groups that are the fundamen
tal groups of compact non-positively curved Riemannian manifolds, including the 
Flat Torus Theorem, the Solvable Subgroup Theorem and the Splitting Theorem. 
In Chapters 11.6 and 11.7 we generalize these results to the case of groups that act 
properly and cocompactly by isometries on CAT(O) spaces. These generalizations 
have a variety of applications to group theory and topology. 

In Chapters 11.8 and 11.9 we explore the geometry at infinity in CAT(O) spaces. 
Associated to any complete CAT(O) space one has a boundary at infinity ax, which 
can be constructed as the set of equivalence classes of geodesic rays in X, two rays 
being considered equivalent if their images are a bounded distance apart. There is 
a natural topology on X = X u ax called the cone topology. If X is complete and 
locally compact, X is compact. If X is a Riemannian manifold, X is homeomorphic 
to a closed ball, but for more general CAT(O) spaces the topology of ax can be rather 
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complicated. An alternative construction of X is obtained by taking the closure of X 
in the Banach space C*X of continuous functions on X modulo additive constants, 
where X is embedded in C*X by the map that assigns to x E X the class of the function 
y ~ d(x, y). In this description of X the points of ax emerge as classes of Busemann 
functions, and we are led to examine the geometry of horoballs in CAT(O) spaces. 

There is a natural metric L. on the set ax: given ~,J.L E ax, one takes the 
supremum over all points p E X of the angle between the geodesics issuing from p 
in the classes ~ and J.L. The topology on ax associated to this metric is in general 
weaker than the cone topology. (For instance if X is a CAT( -1) space, one gets the 
discrete topology.) We shall explain two significant facts concerning L.: first, if X is a 
complete CAT(O) space then (aX, L.) is a CAT(I) space; secondly, the length metric 
associated to L., called the Tits metric, encodes the geometry of flat subspaces in X, 
in particular it determines how X can split as a product. 

In Chapter 1lI.H we shall revisit the study of boundaries in the context of Gro
mov's 8-hyperbolic spaces. In the context of CAT(O) spaces, the 8-hyperbolic con
dition is closely related to the idea of a visibility space, which was introduced in the 
context of smooth manifolds by Eberlein and O'Neill. Intuitively speaking, visibility 
spaces are "negatively curved on the large scale". In Chapter 11.9 we shall see that 
if a proper CAT(O) space X admits a cocompact group of isometries, then X is a 
visibility space if and only if it does not contain an isometrically embedded copy of 
the Euclidean plane. 

The main purpose of the remaining three chapters in Part II is to provide examples 
of CAT(O) spaces: in Chapter 11.11 we describe various gluing techniques that allow 
one to build new examples out of more classical ones; in Chapter 11.10 we describe 
elements of the geometry of symmetric spaces of non-compact type in terms of the 
metric approach to curvature developed in earlier chapters; and in Chapter 11.12 
we introduce simple complexes of groups as a forerunner to the general theory of 
complexes of groups developed in Chapter 1lI.C. 

Complexes of groups were introduced by Haefliger to describe group actions 
on simply-connected polyhedral complexes in terms of suitable local data on the 
quotient. They are a natural generalization of the concept of a graph of groups, which 
is due to Bass and Serre. In order to work effectively with polyhedral complexes in 
this context, one needs a combinatorial description of them; the appropriate object 
to focus on is the partially ordered set of cells in the first barycentric subdivision of 
the complex, which provides the motivating example for objects that we call scwols 
(small categories without loops). 

Associated to any action of a group on a scwol there is a complex of groups 
over the quotient scwol. If a complex of groups arises from such an action, it is 
said to be developable. In contrast to the one-dimensional case (graphs of groups), 
complexes of groups are not developable in general. However, if a complex of groups 
is non-positively curved, in a suitable sense, then it is developable. 

The foundations of the theory of complexes of groups are laid out in Chapter 
III.C. The developability theorem for non-positively curved complexes of groups is 
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proved in Chapter 111.9, where it is treated in the more general context of groupoids 
of local isometries. 

There are two other chapters in Part III. In the first, Chapter III.H, we describe 
elements of Gromov's theory of 8-hyperbolic metric spaces and discuss the rela
tionship between non-positive curvature and isoperimetric equalities. In the second, 
Chapter III.r, we shall delve more deeply into the nature of groups that act properly 
and cocompactly by isometries on CAT(O) spaces. In particular, we shall analyse 
the algorithmic properties of such groups and explore the diverse nature of their 
subgroups. We shall also show that many theorems concerning groups of isometries 
of CAT(O) spaces can be extended to larger classes of groups - hyperbolic and 
semihyperbolic groups. The result is a substantial (but not comprehensive) account 
of the role which non-positive curvature plays in geometric group theory. 

Having talked at some length about what this book contains, we should say a few 
words about what it does not contain. First we should point out that besides defining 
what it means for a metric space to have curvature bounded above, Alexandrov also 
defined what it means for a metric space to have curvature bounded below by a real 
number K. (He did so essentially by imposing the reverse of the CAT(K) inequality.) 
The theory of spaces with lower curvature bounds, particularly their local properties, 
has been developed extensively by Alexandrov and the Russian school, and such 
spaces play an important role in the study of collapsing for Riemannian manifolds. 
We shall not consider the theory of such spaces at all in this book, instead we refer the 
reader to the excellent survey article of Burago, Gromov and Pererman [BGP92J. 

We should also make it clear that our treatment of the theory of non-positively 
curved spaces is by no means exhaustive; the study of such spaces continues to be 
a highly active field of research, encompassing many topics that we do not cover in 
this book. In particular, we do not discuss the conformal structure on the boundary 
of a CAT( -1) space, nor do we discuss the construction of Patterson measures at 
infinity, the geodesic flow in singular spaces of non-positive curvature, the theory of 
harmonic maps into CAT(O) spaces, rigidity theorems etc. 

It is our intention that the present book should be able to serve as an introductory 
text. Although we shall arrive at non-trivial results, our lines of reasoning will be 
elementary, and we have written with the intention of making the material accessible 
to students whose background encompasses little more than a reasonable course in 
topology and an acquaintance with the basic concepts of group theory. Thus, for 
example, we expect the reader to understand what a manifold is and to be familiar 
with the definition of the fundamental group of a space, but a nodding acquaintance 
with the notion of a Riemannian metric will be quite sufficient for a complete under
standing of this book. In any case, all such knowledge will be much less important 
than an enthusiasm for direct geometric arguments. 
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